
RULE 110: UNIVERSALITY AND CATENATIONS

GAÉTAN RICHARD

Laboratoire d’informatique fondamentale de Marseille (LIF),
Aix-Marseille Université, CNRS;
39 rue Joliot-Curie, 13 453 Marseille, France
E-mail address: gaetan.richard@lif.univ-mrs.fr

Abstract. Cellular automata are a simple model of parallel computation. Many people
wonder about the computing power of such a model. Following an idea of S. Wolfram [16],
M. Cook [3] has proved than even one of the simplest cellular automata can embed any
Turing computation. In this paper, we give a new high-level version of this proof using
particles and collisions as introduced in [10].

Introduced in the forties by J. Von Neumann as a parallel model of computation [13],
cellular automata consist of many simple entities (cells) disposed on a regular grid. All
cells evolve synchronously by changing their state according to the ones of their neighbours.
Despite being completely known at the local level, global behavior of a cellular automata is
often impossible to predict (see J. Kari [6]). This comes from the fact that even “simple”
cellular automata can exhibit a wide range of complex behaviors. Among those behavior,
one often refers as emergence the fact that “complexity” of the whole system seems far
greater than complexity of elements.

Elementary cellular automata are an example of subclass of “simple” cellular automata.
They are obtained by considering only a one dimensional grid (i.e., a line), two possible
states and nearest neighbours (i.e., left and right one in addition to the cell itself). Al-
though very restrictive, some elements of this class do exhibit very complex behaviors
including emergence. One way to assert such a claim is to prove that some of those cellular
automata can embed any Turing computation. Among elementary cellular automata, more
likely candidate to this property were though to be the ones that exhibit meta-structures
with predictable behavior. Those meta-structures have been studied with regards to their
combinatorial aspect (see N. Boccara et al. [1] or J. P. Crutchfield et al. [5]) and widely
used as support for constructions. In fact, M. Cook [3] manages to embed any Turing
computation in an elementary cellular automaton (namely rule 110) using these structures.
However, lack of formalism on those meta-structures forced the author to develop long and
complex combinatorial arguments to prove that intuition on behavior is correct.

In this paper, we shall use a new formalism on these meta-structures developed in [10]
to provide a complete and high-level proof of Turing universality of rule 110 without the
need of complex combinatorial concerns.

2000 ACM Subject Classification: 68Q80,68Q05,37F99.
Key words and phrases: Cellular automata, particles and collisions, Turing, simulation.

Submitted to JAC (Journes automates cellulaires)

1

2 G. RICHARD

In section 1, we give formal definitions of cellular automata, discuss about the notion of
Turing simulation and introduce the framework of particles and collisions. In section 2, we
introduce the cyclic Post tag system used as an intermediate and prove this system is able of
any Turing computation. Finally, In section 3, we explicitly give the meta-structures used,
present in details the construction to encode CPTS and prove that the encoding method is
valid.

1. Cellular automata

Cellular automata are a parallel computation model on a regular grid in discrete time.
In general, this model is known to be able of any Turing computation. In this paper, we
consider only a very simple subclass of cellular automata: elementary cellular automata.
These automata are made of a line of cells with a binary states {0, 1} and only take into
account the three nearest neighbours (i.e., left, center and right). An elementary cellular
automaton is thus a function f : {0, 1}3 → {0, 1} also called local transition function.
One can notice that this class has only a finite number (256) of elements. Usually, those
elements are referred by their index which is the integer obtained by taking for the i-th
digit f(i0, i1, i2) where i0i1i2 is the writing of i in base 2. In the rest of the paper, we focus
on rule 110 whose transition function is depicted in Figure 1.

f(l, c, r) 0 1 1 0 1 1 1 0
(l, c, r) (1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (0, 0, 1) (0, 0, 0)

Figure 1: Local transition function of rule 110

These automata act, in a synchronous way, over configurations c ∈ {0, 1}Z by the global
transition function F (c)i = f(ci−1, ci, ci+1). Starting from an initial configuration c0, the

sequence of successors O = (F (i)(c0))i∈N is called orbit starting from c0. To draw an orbit
of a cellular automaton, one convenient method it to pill up elements of this orbit leading
to a space-time diagram (see Figure 2).

Figure 2: Example of space-time diagram of rule 110 (time goes from bottom to top)

Due to the parallel nature of cellular automata, they have several differences with other
computation models. Therefore, the notion of simulation is less straightforward than usual.
Thus, it needs some discussions presented in the following.

RULE 110: UNIVERSALITY AND CATENATIONS 3

1.1. Universalities

Among the differences between cellular automata and other systems, main ones are
that they have no halting property and act on infinite configurations. These two points
make it very difficult to achieve a “natural” or even standard definition of simulation by
cellular automata of other systems (and in particular Turing machines). In this section, we
discuss the notion of Turing universality and present the version used in our result.

To make a parallel between Turing machines and cellular automata, we first need to in-
troduce some “halting” property somewhere in cellular automata. This is generally achieved
by seeking a particular word in the configuration. This seek can be done either at a specific
place or anywhere on the configuration. Here, we choose the latter option leading to the
following formal definition: A word w ∈ {0, 1}∗ occurs in an orbit O if there exists t ∈ N
and x ∈ Z such that w = Ot,xOt,x+1 . . . Ot,x+|w|−1.

For input, one solution is to restrict to finite configurations (i.e., configurations with a
finite number of non 0 letters). However, this definition is too restrictive in our case. That’s
why we prefer to use the less restrictive set of ultimately periodic configurations: that is
configurations which are of the form ωlmrω where l, m and r are finite words. We request
that these words can be easily computed from the input word of the Turing machine and
that the resulting configuration “halts” if and only if the Turing machine halts. All those
points can be formalised in the following definition:

Definition 1.1. A cellular automaton is Turing universal is for any Turing machine M,
there exists a word w and a log-space function f which maps any words s ∈ Σ∗ to three
words ls, ms, rs such that w occurs in the orbit starting from configuration ωlsmsr

ω
s if and

only if M eventually halts on s.

One can note that our definition is a specific case of the more general scheme presented
by B. Durand and Zs. Róka in [4].

Since most of the problems encountered with definitions of Turing universality come
from the fact that we deal with two heterogeneous systems, another sensible approach of
simulation is to focus on simulation of cellular automata by cellular automata, as described
by N. Ollinger in [8]. This idea led to the notion of intrinsic universality. Intuitively,
a cellular automaton simulates another one if the space-time diagram of the simulating
one can be regularly embedded into the simulating one. Due to the fact that intrinsic
universality requires the whole computation to be embedded in a regular way, intrinsic
universality implies Turing universality but the converse is false. A more detailed study of
those two types of universalities can be found in the survey made by N. Ollinger [9]. In this
paper, we deal with the Turing universality of rule 110, the question of intrinsic universality
of such a rule is still open.

Theorem 1.2 (M. Cook [3]). Rule 110 is Turing-universal.

The construction made by M. Cook makes heavy use of regular structures present in
rule 110. However, due to a lack of specific formalism, it fail to achieve the proof on these
structures level and must default to a technical combinatorial approach. In our paper, we
intend to lever the proof by using specific high-level tools on these meta-structures. These
meta-structures and tools are presented in the next part.

4 G. RICHARD

1.2. Particles and collisions

Through very restricted, elementary cellular automata can exhibit a wide range a be-
haviors. Those behaviors have been experimentally categorised by S. Wolfram [15] into four
classes (see Figure 3): Class I regroups cellular automata whose behavior converges towards
a stable configuration. Class II is constituted by those whose orbits ultimately go into a
cycle. Class III regroups the ones whose behavior seems random and does not exhibit any
kind of regularity. At last, elements of class IV are cellular automata where “(...) local-
ized structures are produced which on their own are fairly simple, but these structures move
around and interact with each other in very complicated ways. (...)”. Such phenomenon is
often referred as self-organisation and is though to include a great computational power.
In fact, simulation of Turing machine by rule 110 heavily relies on such structures. To use
those structures, we need a formalism as the one introduced in [10] which gives us a formal
support on intuitive tools.

Class I (rule 232) Class II (rule 215) Class III (rule 18) Class IV (rule 110)

Figure 3: Behaviors of elementary cellular automata

Intuitively, those elements (which can be seen in the last element of Figure 3) can be
easily described: most of the space-time diagram is filled with a bi-periodic pattern called
background (Figure 4a). Among backgrounds, some uni-periodic structures called particles
seem to travel (Figure 4b). These particles interact with each other and give birth to new
particles in collisions (Figure 4c).

(a) Background (b) Particle (c) Collision

Figure 4: Examples of elements present in self-organisation and symbolic representation.

To give a formalism of these object, one heavily relies on two-dimensional aspect of
space-time diagram. Therefore, in the rest of the paper, we only consider bi-infinite space-
time diagram (i.e., orbits with an infinite sequence of predecessors). Moreover, all definitions
are based on discrete two-dimensional geometry. In this vision, space-time diagrams are

elements of {0, 1}Z2
with constraints induced by local transition function.

RULE 110: UNIVERSALITY AND CATENATIONS 5

A coloring is an application C from a subset Sup(C) of Z2 to {0, 1}. If Sup(C) is
finite then the coloring is said to be finite. Restriction of a coloring C to a subset S of
Z2 is denoted as C|S . Translation of a coloring along a vector u is the coloring of support
{s+ u|s ∈ sup(C)}, defined by (u · C)(z + u) = C(z). Disjoint union of two colorings C and
C′ whit Sup(C)∩ Sup(C′) = ∅ is defined such that z ∈ Sup(C), it holds C ⊕ C′(z) = C(z) and
for all z ∈ Sup(C′), it holds C ⊕ C′(z) = C′(z).

A background is a triplet B = (C, u, v) where u, v are two non-collinear elements of Z2

and C a finite coloration satisfying that
⊕

i,j∈Z2(iu + jv) · C is a space-time diagram. In
the rest of the paper, we abusively also denote by B the resulting space-time diagram. A
particle is a tuple P = (C, u,Bl,Br) where C is a finite coloring, u ∈ Z2, Bl and Br are
backgrounds, provided that I =

⊕
k∈Z ku · C separate the plan in two 4-connected zone L

and R (oriented according to u) ensuring that B|L ⊕ I ⊕ B′|R is a space-time diagram1.

At last, a collision is a pair (C, L) where C is a finite coloring, L is a finite sequence of n
particles Pi = (Bi, Ci, ui,B′i), satisfying:

(1) ∀i ∈ Zn, B′i = Bi+1;
(2) I = C ⊕

⊕
i∈Zn,k∈N kui · Ci cut the plan in n 4-connected zones;

(3) For all i ∈ Zn, C ⊕
⊕

k∈N (kui · Ci ⊕ kui+1 · Ci+1) cut the plane in two 4-connected
zones. Let Pi be the one right of Pi;

(4) C = I ⊕
⊕

iBi|Pi
is a space-time diagram.

Since finite colorings involved in particles and in collisions can be quite large, it would be
unreadable to give them in an analytic form. That’s why we depict them using a graphical
version. To help the reader convince itself, rather than just depicting the coloring, we
give the finite coloring “in context” and highlight it. This representation is more intuitive
but nevertheless completely define the object. In this paper, all background, particles and
collisions shall be given this way (see figure 4). For collisions, we also give the name of
involved particles.

The idea behind formalism [10] is to manipulate space-time diagram representing par-
ticles as lines and collisions as points. Such representation allows to represent evolutions
of the cellular automaton as a planar map (see for example Figure 16) and is formalised
below:

Definition 1.3. a catenation scheme is a planar map whose vertices are labeled by collisions
and edges by particles which are coherent with regards to collisions.

A catenation scheme is a high-level symbolic assembly of particles and collisions. To
make this scheme correspond to a valid space-time diagram, one needs to give explicit
positions for every vertex and check that all local constrains are correct. Alternatively, those
positions can be given indicating relative position of collisions, for example by specifying
the number of repetitions of particles. Such set of repetitions is called valid affectation is
the resulting object is a space-time diagram. The main point is that, from a catenation
scheme, one can automatically know the form of the set of valid affectations.

Theorem 1.4 (N. Ollinger, G. Richard [10]). Given a finite catenation scheme, the set of
valid affectations is a computable semi-linear set.

1In an exact version, disjoint union is replaced by patchwork which require the different colorings to have
a “safety border” on which they agree. This condition can be easily fulfilled by making the finite coloring
larger. In this paper, we stick to this simplified version to avoid unnecessary weight.

6 G. RICHARD

Catenations allow us to construct complex behaviors for cellular automata exhibiting
self-organisation. To apply this in the case of rule 110, we need to manually extract a set
of particles and collisions and then use it to simulate our Turing machine. Although rule
110 is known to have a very wide and complex system of particles and collisions, we are
still not able to simulate directly a Turing machine. To make the simulation, M. Cook
introduces an intermediate dynamical system known as cyclic Post tag systems with several
additional constraints. To do this, one must first prove that this system can embed any
Turing computation and then that rule 110 can embed this system.

For completeness of the proof, the next section describe how Turing machines can be
embedded into this specific version of cyclic Post tag system. On first reading, the reader
who is mainly concerned with rule 110 stuff can easily skip this part and just read cyclic
Post tag systems definition (def 2.2) and assume the proposition 2.4.

2. Cyclic Post tag systems

In this section, we prove that cyclic Post tag systems with additional restrictions can
simulate any Turing machine. Those systems are a variant of Post tag systems whose Turing
power has been know for long (see H. Wang [14] or J. Cocke and M. Minsky [2]). From those
systems, obtaining a cyclic one is not very difficult but ensuring the additional restrictions
require a deep understanding of the simulation. Since those restrictions are a key point of
the proof of rule 110, we choose to give a full proof of Turing machines simulation.

2.1. Definitions

Introduced by A. Turing in the thirties [12], Turing machines are one of the main
dynamical system in computability theory. In our case, they consist of a bi-infinite tape
filled with letters chosen among a finite alphabet Σ (see Figure 5). On the tape, there is
a unique head with a state taken among a finite set Q. Dynamic is obtained the following
way: at each time step, the head can write a new letter at its position, change its state and
make a move to the left or to the right. The behavior of the head is uniquely determined by
the current state of the head and the symbol on the tape under it. This behavior is denoted
by the transition function δ. Initially, the tape filled with one distinguished white letter
w(∈ Σ) on all but a finite portion called input. The head starts at position 0 in the initial
state q0 . Computation steps are done by applying the local rule until the head enters the
halting state qf . This can be formalised with the following definition:

Definition 2.1. A Turing machine (TM for short) is a tuple (Σ, w,Q, q0, qf , δ) where:

• Σ is the finite set of letters;
• w ∈ Σ is the white letter;
• Q is the finite set of states;
• q0, qf ∈ Q are the initial (resp. halting) state;
• δ : Q× Σ→ Q× Σ× {←,→} is the transition function.

At each step, the system is fully defined by a configuration consisting of the non-
white portion of the tape along with the current state and position of the head. In this
system, all changes are localised under the head. Although simple, this system has as much
computational power as most of other known dynamical systems. In this paper, we also
use another system known as cyclic Post tag system. This system was first introduced by

RULE 110: UNIVERSALITY AND CATENATIONS 7

w ww ww ww ww w.a b a b a w a b

q q′

Figure 5: Example of Turing machine transition δ(q, b) = (q′, w,→)

E. Post in 1943 [11]. A Post Tag system (PTS for short) can be described as a finite queue
on a finite alphabet Σ. At each step, the system pops a finite fixed number n of letters
from the queue. Then, according to the first popped letter, it pushes a (possibly empty)
word at the end of the queue (see Figure 6a). The function associating the pushed word to
the read letter δ is called transition function. The system starts with an initial finite input
word in the queue. Transition rule is applied until there are not enough letters left to pop
in the queue (i.e., strictly less than n). Formally, a Post Tag system can be depicted as a
triplet (Σ, n, δ) where Σ is the finite set of letters; n is a non-null integer and δ : Σ→ Σ∗ is
the local transition function.

01 01100 11011 (ε, 10011, 011100, 01)
01 100 1011 (10011, 011100, 01, ε)
10 0 01110011 (011100, 01, ε, 10011)
01 00 11110011 (01, ε, 10011, 011100)
00 111001101 (ε, 10011, 011100, 01)
ε (halts) . . .

(a) Post Tag System ({0, 1}, 2, θ) (b) Cyclic Post Tag System
with θ(0) = ε and θ(1) = 100 (ε, 10011, 011100, 01)

Figure 6: Example of Post tag systems transitions

In this paper, we use a variant of this system called Cyclic Post Tag System (CPTS
for short) depicted in Figure 6b. In this variant, the alphabet is fixed to {0, 1} and the
transition rule is replaced by a finite cyclic list of words (w0, w1, . . . , wk−1) on {0, 1}∗. At
each step, the systems pops the first letter. If this letter is 1, it pushes the first word of
the list (here w0) at the end of the queue. Then, in all cases, it rotates the list of words —
here, for example, the list becomes (w1, w2, . . . , wk−1, w0). As previously, starting form an
initial input word in the queue, transitions occur until the queue is empty. In this case, the
system is said to halt on the selected input. This leads to the following definition:

Definition 2.2. A cyclic Post tag system P is a finite cyclic list (w0, w1, . . . , wk−1) of words
over alphabet {0, 1}.

Once again, at each step, the system can be entirely characterised by a configuration
consisting of the current content of the queue and the current rotation of the cyclic list
(more precisely, the index of the first word in the list). The rest of this section is devoted
to prove that CPTS can embed any Turing machine even when ensuring two additional
restrictions. The first one is on the length of every word in the cyclic list. The other one is
on the occurrence of letter 1 during any Turing simulation.

8 G. RICHARD

2.2. From Turing machines to cyclic Post tag systems

In this section, we show how a CPTS can simulate a Turing machine. Intuitively, the
notion of simulation indicates that there exists an easy way to transform any input of the
Turing machine into an input of the CPTS such that the Turing machine halts on the input
if and only if the CPTS does. This can be formalised by the following:

Definition 2.3. A CPTS P simulates a Turing machine M if there exists a function
f : Σ∗ → {0, 1}∗ which is simple2 such that for any word s ∈ Σ∗, M eventually halts on s
if and only if P eventually halts on f(s).

With this definition, we can state the main theorem of this section which says that a
subset of CPTS is sufficient to simulate any Turing machine. As underlined before, the
result has been already known for long in the general case but restrictions need a deep
understanding of the method used. For this reason and to give the reader a complete view
of the embedding process, we give in the following the complete reduction. Restrictions may
seem quite mystic for now but they will appear when embedding this system into cellular
automaton 110.

Proposition 2.4. Any Turing machine M can be simulated by a cyclic Post tag system P
such that:

• the length of any word in P is a multiple of 6;
• during any step of the simulation, there is at most K consecutive steps with 0 as

the first popped letter. Moreover, K only depends on M.

Proof. First of all, it is well known than any Turing machine can be simulated by a Turing
machine on alphabet {0, 1} with white letter 0. Since the reduction is trivial, we restrict our-
selves to Turing machine with this alphabet. In this proof, we prove an even stronger result:
there exists a transformation of any Turing machine configurations into CPTS configura-
tions which commutes with dynamics. The proof is done by using PTS as an intermediate
model.

Let us take any Turing machineM = ({0, 1}, 0, Q, q0, qf , δ) and c be a configuration of
the Turing machine. It can be entirely defined by the state of the head q , the portion of
the tape on the left of the head, the one on the right and the letter under the head i (see
Figure 7). Since left and right words have only a finite number of 1 letters (i.e., non-white),
they can be depicted as integers nl and nr which give c on the form (nl, nr, q, i).

At this point, let us how encode this configuration into a PTS (Σ, n, δ′) configuration.
To encode all information, we use different methods:

• the left (resp. right) integer is encoded in unary between start and end markers;
• state is encoded in every letter of the queue;
• current letter is encoded using the fact that only one letter over n is read.

To allow encoding of all these information, let us take an alphabet Σ0 on the form
M ×{J,I}×Q×{0, 1} where M = {., •, ◦/, •/} contains a marker information (respectively
one for start, one for interior and two for end). The part {J,I} indicates if we speak
about left or right word. the set Q is used to encode the current state. The last part of the
alphabet refers to the parity of the position: throughout the construction, every letter on the
form (m, f, q, 0) is followed by a (m, f, q, 1) letter. Such sequence is called representation
and depicted as mf (omitting the state for clarity). Moreover, representations are often

2usually, we request a log-space function but here we use the even more restrictive notion of morphism

RULE 110: UNIVERSALITY AND CATENATIONS 9

doubled, the result is called tag. With this formalism, a configuration c = (nl, nr, q, 0)
is encoded in the queue as .J.J(•J•J)2nl ◦/J ◦/J •/J •/J .I.I(•I•I)2nr ◦/I ◦/I •/I •/I (see also
Figure 7). For the (nl, nr, q, 1) case, the encoding is the same except that the first letter
is removed. As we have made four letters blocs, we choose n = 4 (i.e., read one letter and
then discard 3). This ensure that exactly one letter is read per tag.

Turing configuration 0 0 0 0 0 0 01 1 1.

q

With left and right words (10, 110, q, 0)
Converting into integers (2, 6, q, 0)

PTS configuration (state omitted) .J.J(•J•J)4 ◦/J ◦/J •/J •/J .I.I(•I•I)12 ◦/I ◦/I •/I •/I

Figure 7: From Turing machine configuration to PTS configuration

At this point, let us study how transitions are achieved. Let (nl, nr, q, i) be a config-
uration of the Turing machine. Let us assume that the transition is on the form δ(q, i) =
(q′, s,←) (the case → is obtained by symmetry). In these conditions, the successor of the
configuration is (nl/2, 2nr + s, q′, nl mod 2) (shifting bits corresponds to multiplying or
dividing by 2). Thus, in our PTS we need to:

• update the state;
• multiply the right value by 2;
• add s to the right value;
• divide the left value by 2;
• make an integer floor on the left value;
• read the modulus of the left value and transform it into positioning.

Sadly, doing all these operations requires three passes. The current pass is encoded in all
letters of the queue by extending the alphabet with a Cartesian product: the new alphabet
is Σ1 = Σ0 × {A,B,C}. In pass A, we do the first four points. In pass B, we do the floor
and read the modulus and in pass C we convert the read modulus to alignment.

Now, let us construct the transition function achieving this behavior. A full example
of transition is given in Figure 8. During pass A, for each encountered tag, we know the
current state (present in the letter) and the current value under the head (read in the last
element of the letter). Thus we know the transition and can update the state and the left
and right values. For the doubled value, we copy the start and end tags, double each interior
tag and add one interior case if 1 if written. For the divided value and for each encountered
tag (start, interior or end), we write only one corresponding representation (thus dividing
the number of letters by two even for boundaries). As the word is only made of tags, the
relative position of read letters is the same after the first pass. During pass B, floor and
modulus of the divided word are computed as depicted in Figure 8: First, the starting letter
is read whereas eating one interior representation and writing a start tag. Thereafter, we
write one interior tag for every two interior representations. At the end, we can either arrive
on the first or second ending representation according to the interior representation parity.
In addition to write both end tags, we can also insert some new letters # to change the
relative position in the next step. On other portions, we just need to make a copy which
can be easily achieved since they are compound of tags (recall tags are made of four letters
and thus are read exactly one time). The last part also consists just of copying. Passing

10 G. RICHARD

above letters # ensures the correct new positioning of read letters. A careful reader may
note that the depicted method is not fully correct since in pass B, we must know which
word must be floored and have no longer access to this information. However, this can be
easily overcome by enlarging once again the alphabet.

The last point is to define the behavior in the case we reach an halting state of the
Turing machine. This case is easily dealt with by requesting the Post system to erase the
whole queue, causing it to halt. To ensure our additional condition, we need to bound the
number of step without writing. Since the only case where there is no writing is when erasing
the configuration on halting, it is easy to obtain a bound by requesting that the simulated
Turing machine halt only with empty tape. This set of machine is obviously also Turing
powerful. With this restriction, the number of step without write is bounded by the number
of steps (precisely six) to erase the empty configuration .J.J ◦/J ◦/J •/J •/I.I.I ◦/I ◦/I •/I •/I.

Pass A:
.J.J (•J•J)18 ◦/J ◦/J •/J •/J .I.I (•I•I)8 ◦/I ◦/I •/I •/I

.J.J (•J•J•J•J)18 •J•J ◦/J ◦/J •/J •/J .I (•I)8 ◦/I •/I

Pass B:
.J.J (•J•J)37 ◦/J ◦/J •/J •/J .I•I (•I•I)3 •I ◦/I •/I

.J.J (•J•J)37 ◦/J ◦/J •/J •/J .I.I (•I•I)3 •I•I #2 •/I •/I

Pass C:
.J .J•J (•J•J)36 •J ◦/J ◦/J •/J •/J.I .I•I (•I•I)3 •I#2 •/I •/I

.J.J (•J•J)36 •J•J ◦/J ◦/J •/J •/J .I.I (•I•I)3 •I•I •/I •/I

Figure 8: Example of a Turing transition simulation (above is the read queue and below
the corresponding elements written).

At this point, we want to convert our PTS system into a CPTS one. This can be done
without any real difficulty (see Figure 9). Let us take the alphabet Σ of the PTS. It is
possible to represent the n-th letter with a fixed length sequence of 0 by marking a letter
1 in a the n-th position. One can trivially request that the length m of those words is a
multiple of 6 (ensuring our first additional condition). This way, we can convert all letters
to words on alphabet {0, 1}. Since all letters have the same size, each transition read a fixed
number 4m of letters. The transition is indicated by the 1 in the first m read letters. Thus
the cyclic list can be done the following way: take a list of length 4m, for the first m words,
the word is the result by the transition of the PTS on the m-th letter. All other words are
taken empty. To end this, let us look at the maximal number of consecutive erasing. Since
a complete rotation of the list correspond to a transition of our PTS, we know there are at
most 24m steps without writing.

Initial Post system a ` bb, b ` caa, c ` ε
Representation of letters a⇔ 100000, b⇔ 010000, c⇔ 001000
Representation of images bb⇔ 010000010000, caa⇔ 001000100000100000, ε⇔ ε

Cyclic word list (with step 4) (010000010000, 001000100000100000, ε, ε18)

Figure 9: From PTS to CPTS

RULE 110: UNIVERSALITY AND CATENATIONS 11

In this transformation, we need to go thorough the configuration three times to simulate
one transition of the initial Turing machine. Since we use unary encoding, the length of
the configuration can double at each simulated step, thus the speed of simulation suffers an
exponential slowdown. With a more subtle and complex methods, T. Neary and D. Woods
managed to obtain a polynomial slowdown [7] [17] . This result allows them to obtain
stronger results using the simulation presented in the rest of the paper. In particular, they
prove that predicting rule 110 is P-complete with respect to Turing reducibility.

3. Universality of rule 110

Now, let us go back to rule 110. This last section is devoted to simulate a CPTS
(with the additional restrictions) with rule 110. Of course, this simulation is done using
tools introduced in section 1.2. With those tools, the way of constructing and proving the
simulation is the following:

(1) First, give an explicit set of particles and collisions of rule 110;
(2) Then, construct the simulation at a global level using catenations;
(3) Last, use properties of catenation to ensure that simulation is correct (in particular

at local level).

The rest of this section is organised this way.

3.1. Particles and collisions of rule 110

Rule 110 do possess a very wide number of particles and collisions. In this part, we
extract a small subset of those particles and collisions that are used in the construction.

For background, we use only one background (the standard one on rule 110) which is
given in Figure 10. Since it is the only background, it is omitted in all following objects
and representations.

Figure 10: Background used in the construction (coloring is highlighted)

During the construction, we use a bunch of particles and collisions. To ease the reading
and understanding of the construction, some hints about particles and collisions use are
given alongside their description.

These particles serve as support for information. Dynamic is achieved by a set of 23
collisions depicted in Figures 12 to 14. As for particles, each collision is given by an extract of
the space-time diagram where non perturbation pattern is highlighted. Moreover, symbolic
behavior of collisions on particles are also given as formulae.

Remark 3.1. The full set of particles and collisions used in this paper contains 18 particles
and 23 collisions that are all depicted in Figures 11, 12, 13 and 14.

12 G. RICHARD

p ←−a1 −→a3

←−a4 ←−a5 −→a6

−→a7
−→
b1

←−
d4

−→s ←−ı2
←−
d5

−→
b2

←−
d1

←−
d2

c ←−ı p2

Figure 11: Particles used in the construction (with highlighted finite coloring)

RULE 110: UNIVERSALITY AND CATENATIONS 13

f d d′
−→
b1 +←−ı `

−→
b2 p+←−ı ` p2 p2 +←−ı2 ` ←−ı + p

f ′ g1 g2−→
b2 +←−ı2 `

−→
b2 c+←−ı ` ←−a1 c+←−a1 ` ←−ı +−→a3

g5 g4 g3
−→a3 +

←−
d1 ` p c+←−a5 +←−a4 ` ←−ı c+←−ı ` ←−a5 +←−a4 +−→a3

Figure 12: Collisions used in the construction

14 G. RICHARD

g′7 g′8 g8
−→a6 +←−ı `

−→
b2

−→
b2 +←−ı `

−→
b1 p2 +←−ı `

−→
b2

h g′9 g6
−→s +←−ı ` ←−ı +−→s

−→
b1 +←−ı ` p −→a3 + p+

←−
d4 ` ←−ı + p

k s g′6
−→s +←−ı ` c

−→
b2 +←−ı `

−→
b1

−→a3 + p+
←−
d4 ` −→a6

Figure 13: Collisions used in the construction (cont.)

RULE 110: UNIVERSALITY AND CATENATIONS 15

s′ w′1 w2−→
b1 +←−ı2 `

−→
b1 p2 +←−ı ` ←−ı +−→a3 +−→a7

−→
b1 +

←−
d5 +

←−
d2 ` ←−ı +

←−
d1

w′2 j
−→a3 +−→a7 +

←−
d5 +

←−
d2 ` ←−ı +

←−
d1 c+←−ı ` ←−ı + c

Figure 14: Collisions used in the construction (end)

At this point, let us discuss how to encode CPTS elements using particles. Encoding
information into particles can be done in two ways: either by the type of particle used or
by the relative position in a group of particles. In the construction, both methods are used.
This implies, in particular, that some bits of information are conveyed by groups of parallel
particles. Those groups of particles are called symbols and named with capital letters. To
encode binary letters of the CPTS, we use groups of four particles, the letter x ∈ {0, 1} is
encoded by the relative position of those particles. In the construction different groups are

used to encode letters:
←−
F x = (←−ı ←−ı2)4 are words list letters (called frozen letters); Cx = c4

are queue letters and
←−
W x = ←−ı 4 temporary container (called unfrozen letters). To encode

the cyclic list of words, we also use a starting symbol
←−
S = ←−ı

←−
d1
←−
d4
←−ı 4←−ı2 and a delimiter←−

D =
←−
d5
←−
d2
←−
d1
←−
d4
←−ı 4←−ı2 . The behavior of transition is stored in a erasing symbol

−→
B =

−→
b2 or

a copying symbol P = p. For the dynamic, two additional symbols are needed: a clock−→
T = −→s 4 and some junk

←−
J = ←−ı 2. Some of these symbols also have a degraded version

16 G. RICHARD

that we denote with a tilde: F̃x = (←−ı ←−ı2)3(←−ı ←−ı), S̃ = ←−ı
←−
d1
←−
d4
←−ı 4←−ı , D̃ =

←−
d5
←−
d2
←−
d1
←−
d4
←−ı 4←−ı ,

P̃ = −→a3−→a7 and B̃ =
−→
b1 .

Combining collisions into finite catenations, it is possible to obtain 10 different possible
behaviors with symbols (and 6 additional with altered versions). The complete list of such
catenations are given in Figure 15 and Figure 16. Altered versions are not fully depicted
since they can be very easily obtained from non-altered ones. The catenation C̃ is the same
as C with half number of collisions. For S̃0, the only difference is that the upper collision is
g′8 rather than f ′ (as for M̃0). For S̃1 and M̃1, the same holds replacing the upper collision

d′ by w′1. The last catenations E0, Ẽ0, E1 and Ẽ1 are made with only one collision (w2 for
the first two ones, w′2 for the last two ones).

R
−→
T +

←−
W x ` Cx

C′
−→
T +

←−
J `

←−
J +

−→
T

C Cx +
←−
W y `

←−
W y + Cx C̃ Cx +

←−
J `

←−
J + Cx

S0 C0 +
←−
S `

←−
J +

−→
B S̃0 C0 + S̃ `

←−
J + B̃

S1 C1 +
←−
S `

←−
J + P S̃1 C1 + S̃ `

←−
J + P̃

M0
−→
B +

←−
F x `

−→
B M̃0

−→
B + F̃x ` B̃

M1 P +
←−
F x `

←−
W x + P M̃1 P + F̃x `

←−
W x + P̃

E0 B̃ +
←−
D `

←−
S Ẽ0 B̃ + D̃ ` S̃

E1 P̃ +
←−
D `

←−
S Ẽ1 P̃ + D̃ ` S̃

Figure 15: Local behavior of symbols

3.2. Simulation and catenation

With the previously defined local encoding of CPTS elements, let us proceed by speci-
fying the global encoding and construct catenations embedding the dynamic.

Encoding of a CPTS configuration is made the following way: in the center, the queue
is written with symbols Cx, the upper symbol of the queue being on the right. Right of
these elements, the cyclic list of words is repeated infinitely starting from the current word.

Words are written with symbols
←−
F x and separated with symbols

←−
D . The first symbol

before the current word is
←−
S . Furthermore, a symbol is replaced by its altered version

where being the last one before a delimiter — i.e., representing the last letter of a word
or being a delimiter (or a start symbol) before an empty word. On the left of the queue

contents, there is an infinite amount of
−→
T symbols.

Proposition 3.2. For any CPTS evolution, it is possible to construct a catenation scheme
embedding the evolution.

Proof. The catenation uses the symbols presented above. An extract of such a catenation
can be found in Figure 17. First, the upper letter of the queue encounters the starting

symbol, resulting either on a erasing symbol
−→
B (catenation S0) or a copying symbol P

(catenation S1) according to the considered letter. This symbol encounters all frozen letters
of the word erasing them (M0) or transforming them into an unfrozen ones (M1). On the

last letter, altered catenations (M̃0 or M̃1) alter the symbols which encounter the next

RULE 110: UNIVERSALITY AND CATENATIONS 17

k

j

j

j

k

j

jk

j

k

h

hh

hh

hh

h

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

R C′ C

s

s′

f

f ′

s

s′

f

f ′

d

d′

d

d′

d

d′

d

d′

g1

g2

g3

g4

g5

g6

d

g8

g′8

f

f ′

g1

g2

g3

g4

g5

g′6

g′7

g′8

g′9

d

d′

M0 M1 S0 S1

Figure 16: Behaviors of symbols

delimiter, transforming it into a new starting symbol (E0 or E1). Unfrozen letters are going
left, crossing all queue letters (C). After that, they are added at the end of the queue when

colliding with a
−→
T symbol (catenation R). One can note that catenations Sx also generate

some junk symbols that go left untouched crossing both queue letters (catenation C̃) and
clock symbols (catenation C). In the case of an empty word, the behavior is the same up
to the fact that the altered symbol of copy or erase is directly generated by an altered start
catenation (S̃x). After those steps, the system is ready for a new transition. The simulated
system halts when the queue is empty. On the space-time diagram, this condition can

be easily expressed by a word indicating that a clock symbol
−→
T encounters a start of list

symbol
←−
S .

18 G. RICHARD

←−
W

←−
F F̃

←−
S S̃

←−
J

←−
D D̃

C

P P̃

−→
B B̃

−→
T

Figure 17: Symbolic behavior of simulation

This explanation conclude the description of dynamic simulation. The last point is to
prove that those symbolic behaviors correspond to valid space-time diagrams. At this point,
properties of catenation allows us to end the proof without resort to low-level study.

3.3. Validity of simulation

Let us now study the catenation schemes simulating computations of the CPTS. In this
section, we shall use properties of catenations to ensure that constructed simulation can
really happen in the cellular automaton.

Proposition 3.3. The previously constructed catenations have all valid affectations. More-
over, constraints on input are independent on the considered evolution.

Proof. At first, let us look at a global level. Since many symbols are parallel, there are
hardly any problem on the order of encounters. The only non-trivial one is that any unfrozen
symbols must cross the whole queue before encountering the clock symbol. This implies
that is must have crossed the last queue letter before encountering the clock symbols. Since
the last queue letter is previous unfrozen letter, the previous condition can be formalised
by saying that space between two consecutive clock symbol must be greater than maximum
space between two consecutive unfrozen (i.e., copied) letters. At this point, you can see one
of the additional conditions on number of consecutive erasing during Turing simulation.
With this condition, there is a fixed size for clock spacing ensuring the correct order of
collisions independently of the computation.

Now, let us study local constraints. Due to our global approach with collisions and
catenations, we have “forgotten” local constraints. In previous proves, the method to
ensure these local constraints where by fixing values on the initial configuration and show
by induction that they remain consistent. This approach requires a very detailed study and
many combinatorial arguments. Here, with the help of catenations, we can have a more
global and intuitive approach.

RULE 110: UNIVERSALITY AND CATENATIONS 19

The first remark is that since all our catenations are finite, theorem 1.4 allows us to know
affectations such that catenations correspond to real space-time diagram extracts. The set
of affectations can be automatically obtained using Presburger arithmetic as described in
details in [10].

The only important thing on obtained result is that there exists values for S0 and S1

that have the same spacing for particles inside
←−
S symbol. The same way, it is possible

to chose fixed values of spacing for all other signal in symbols that ensure coherence in
all catenations. The only exception being the junk symbol which has two possibles values
depending on whether it has be generated from a S0 or S1 catenation.

The last point is to study spacing between symbols. During this process, one look at
the catenations formed by the border of the one introduced previously. Even if the used
method is the same as previously, some interesting things may be noted: First, the main
difference between junk signals and unfrozen letters are the relative positions of particles
←−ı . Another main point encounter when studying the erasing face (see Figure 18). In this
face, each erased letter induce a small shift which can not be compensated directly. The
solution for this problem is to require that the number of letter is a multiple of 6 which
provide a greater and solvable gap. This explain the second restriction introduced in our
CPTS.

Conclusion

In this paper, we have shown how any Turing computation can be embedded into
rule 110. Starting from a Turing machine, we show how to embed it into a CPTS in
Proposition 2.4. Then, we show how to encoding this system into rule 110 space-time
diagram (Proposition 3.2) and that this encoding is correct (Proposition 3.3). Thus proving
that rule 110 is Turing universal. The main achievement is that the construction can be
completely made at high level using particles and collisions which allows to follow at each
point what is happening. This construction is very interesting but does only erase particles
without creating it, thus having the need to be continually feed with particles. This need
of “fuel” is not compatible with intrinsic universality. One open question is whether or not
rule 110 is intrinsically universal.

References

[1] N. Boccara, J. Nasser, and M. Roger. Particle like structures and their interactions in spatio tempo-
ral patterns generated by one-dimensional deterministic cellular-automaton rules. Physical Review A,
44(2):866–875, 1991.

[2] J. Cocke and M. Minsky. Universality of tag systems with p = 2. Journal of the ACM, 11(1):15–20,
1964.

[3] M. Cook. Universality in elementary cellular automata. Complex Systems, 15:1–40, 2004.
[4] B. Durand and Zs Róka. The game of life: universality revisited. In Cellular automata (Saissac, 1996),

pages 51–74. Kluwer Acad. Publ., Dordrecht, 1999.
[5] W. Hordijk, C. R. Shalizi, and J. P. Crutchfield. Upper bound on the products of particle interactions

in cellular automata. Physica D, 154(3-4):240–258, 2001.
[6] J. Kari. Theory of cellular automata: a survey. Theoretical Computer Science, 334:3–33, 2005.
[7] T. Neary and D. Woods. P-completeness of cellular automaton rule. In ICALP, Lecture Notes in Com-

puter Science, pages 132–143. Springer, 2006.

[8] N. Ollinger. Automates cellulaires : structures. PhD thesis, École Normale Supérieure de Lyon, 2002.

20 G. RICHARD

g6

d1

g8

g′8

f

f ′

s

s′

f

g′8

w2

j

g1

Figure 18: Erasing catenation

[9] N. Ollinger. Universalities in cellular automata; a (short) survey. personal communication (to appear in
JAC 2008), 2008.

[10] N. Ollinger and G. Richard. Collisions and their catenations: Ultimately periodic tilings of the plane.
http://hal.archives-ouvertes.fr/hal-00175397/en/, 2007.

[11] E. Post. Formal reductions of the general combinatorial decision problem. American Journal of Math-
ematics, 65(2):197–215, 1943.

[12] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings
of the London Mathematical Society, 2(42):230–265, 1936.

[13] J. Von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Urbana, Ill., 1966.
[14] H. Wang. Tag systems and lag systems. Mathematische Annalen, 152(1):65–74, 1963.
[15] S. Wolfram. Universality and complexity in cellular automata. Physica D. Nonlinear Phenomena, 10(1-

2):1–35, 1984. Cellular automata (Los Alamos, N.M., 1983).
[16] S. Wolfram. A new kind of science. Wolfram Media Inc., Champaign, Ilinois, United States, 2002.
[17] D. Woods and T. Neary. On the time complexity of 2-tag systems and small universal Turing machines.

focs, 0:439–448, 2006.

