
Asynchronous Fixability of a ternary network:1

“rock-paper-scissor” rule2

Florian Bridoux �3

GREYC, Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France4

Gaétan Richard �5

GREYC, Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France6

Abstract7

2012 ACM Subject Classification Replace ccsdesc macro with valid one8

Keywords and phrases Dummy keyword9

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2310

Funding This work was sponsored by ANR C_SyDySi (19-CE48-0007-01)11

Introduction12

Complex system is a field of research that consider a large number of elements that follow a13

simple and local rule but that exhibits in there whole complex behaviour. One of its main14

objective is to build links between properties of the local rule and global behaviour. One15

use of such research is to give tools and hints to scientists doing modelling. Among many16

other model, discrete neural networks consist on a finite graph representing interaction of17

binary elements (such as genes [6]) with simple local rules. They were introduced to model18

neural activity [7]. This formalisation has latter been studied from the computer science19

approach and has lead to results linking the structure of the underlying graph and dynamical20

properties of the system (see for example [2]). Latter on, many other work has been done to21

study the derived model of automata network and in particular, one axis try to determine22

whether the system can be (asynchronously) fixed [3].23

Due to the nature of the system, many of previous work has been done on the binary case.24

Here, we shall extend to the ternary case. The problem is difficult as the binary case has still25

many unsolved cases. Thus, we have little hope to give complete generic result. However,26

we aim to present a meaningful example exhibiting interesting properties and being able to27

extend or disproof results achieved in binary. The rule is base on the “rock-paper-scissor”28

rule that has been studied by Hellouin de Menibus and Le Borgne in [5].29

In a first section, we shall giving the different definition and give some insight of the30

complexity of fixability problem in the generic case. After that, we shall study the spectific31

case of our rule and show several behavior. In addition to refining the complexities, we shall32

show that this rule is fixable over any strongly connected graph.33

1 Automaton network and fixability34

1.1 Definitions35

Let G = (V, E) be a directed graph (E ⊂ V 2). For an vertex (called site) v ∈ V , we define36

the predecessors of v as the set P (v) = {v′|(v′, v) ∈ E}. A path from v0 to v′n is a sequence37

of edges ((vi, v′i))i∈[0..n] such that v′i = vi+1. It is a cycle if v0 = v′n. A graph is strongly38

connected if, for any distinct pair of edge (v, v′), there is a path from v to v′ (and from v′ to39

v).40

© Florian Bridoux and Gaétan Richard;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Florian.Bridoux@unicaen.fr
mailto:Gaetan.richard@unicaen.fr
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Asynchronous Fixability of a ternary network: “rock-paper-scissor” rule

Let S be a finite set of states. A configuration is a triplet (V, E, C) where (V, E) is a41

directed graph and C ∈ V S a colouring of vertices.42

In general, an automata network is defined as a set of |V | (distincts) functions f1, f2, · · · , fn43

such that fv : SP (v) → S.44

In this paper, we shall focus on the case where all functions are uniform and do not45

depend on the order in the set of predecessors. We keep a dependency on the state of the46

current vertex and the set of states of its predecessors. We denote as S(S) the subsets of S47

and give the following definition:48

I Definition 1. An automata network as a function r : (S × S(S))→ S.49

We also chose the fully asynchronous updating where only one site is updated at any50

time. Given a configuration C = (V, E, C), the action of the network automata r applied on51

site v ∈ V is defined by C′ = (V, E, C ′) with for all v′ ∈ V ,52

C ′(v′) =
{

r(v, P (v)) if v’ = v
C(v′) otherwise53

A site v of a configuration C is active if r(v, P (v)) 6= v. That is, action of the automata54

network on v changes the configuration. A configuration c is said to be a fixpoint for an55

automaton r if there is no active site. Given this, we can define fixablity as the existence of a56

sequence reaching a fixpoint.57

I Definition 2 (Fixability).58

An automata network is fixable on a configuration if and only if there exists a sequence59

of activation v1, v2, · · · , vn such that the resulting configuration is a fixpoint.60

An automata network is fixable on a graph G if and only if it is fixable over all configur-61

ations of G.62

Fixability as been studied mostly in the boolean case [1, 8, 9].63

1.2 Complexity64

In this section, we shall give some first elements on the complexity in general case of fixability.65

One difficulty regarding automata network is the encoding of the input. In this paper, we66

choose to put emphasis on the influence of the underlying graph. Thus, we work using a67

“fixed” rule that we only require to be PTIME computable.68

Our problem Configuration fixability is thus the following: given a fixed PTIME69

function, given as input a graph and a configuration, answer whether the automata network70

using this rule is fixable on the configuration. Omitting the configuration leads immediately71

to graph fixability.72

I Proposition 3. Configuration fixability and Graph fixability are PSPACE.73

Proof. Let us consider the dynamics graph constructed over the set of configuration with an74

edge C,C′ if there exists an action changing C into C′. This dynamics graph is exponential75

with respect to the input graph.76

Knowing if a configuration is a fixpoint is linear (just check any site).77

For Configuration fixability, the problem consist in finding whether there exist a78

path in the dynamics graph leading to a fixpoint. For this, it is sufficient to enumerate all79

F. Bridoux and G. Richard 23:3

vertex (linear in size), check whether they are a fixpoint. And, if it is the case, check whether80

there exists a path between the initial configuration and the designed vertex. This problem81

(st-connectivity) is NL in the size of the graph and thus PSPACE with respect to our input.82

For Graph fixability, just iterate the previous algorithm over any configuration.83

J84

As there is an exponential number of configurations, if a graph is fixable, then, there85

exist an (exponential) sequence of action that, starting from any configuration, reaches a86

fixpoint. One interesting question is to determine the shortest sequence that does this. In87

particular, if a polynomial sized one exists, then the problem becomes NP. This problem can88

be seen as an extension of the Synchronisation problem [10] for finite automaton. For the89

case of boolean network automata, several results exists for families of function [4, 3].90

I Proposition 4. Configuration fixability is LINSPACE-hard.91

Proof. The reduction is done by directly encoding Turing-Machine.92

The graph consist just on a bi-directed line V = (vi)i∈[0,n] and E = ((ei−1, ei) ∪93

(ei, ei−1))i∈[1,n] that will be used to encode the current configuration of the Turing ma-94

chine.95

The key point is how to encode the Turing-head and its evolution. To do this, we use96

a trick by adding a binary information indicating if a state is marked. The transition is97

done in three steps, first, the new position of the head is created in unmarked state, then98

the old position is removed (along with updating the colour of the tape, this step checks the99

existence of the new head). At last, the new head is marked (this steps checks the absence of100

old marked head).101

This ensure that, starting from an initial configuration, there is at most one marked head.102

If it is the case, either there is no unmarked head among the predecessor and the only active103

site is the new position of the head; or, in the other case, the only active site is the marked104

head to remove. At last, if there is only one unmarked head, it is the active site.105

If the head goes beyond the tape, it enters a special state that only alternate between106

two colours.107

Starting from the initial configuration of the Turing machine, the evolution reaches a108

fixpoint if and only if the machine reaches an halting state without exiting the linear size of109

the tape.110

J111

2 “rock-paper-scissor” rule112

For the rest of the paper, we shall concentrate on a specific simple but yet interesting rule:113

rock-paper-scissor.114

In this section, we consider the “rock-paper-scissor” automaton over the set of states115

S = {0, 1, 2} given by the rule116

r(v, s) =
{

v + 1 mod 3 if (v + 1 mod 3) ∈ s

v otherwise117

Intuitively, this rule changes a vertex’s states if there is a “winning” state inside its118

predecessors. Although simple, this rule exhibits interesting behaviours as studied in [5].119

CVIT 2016

23:4 Asynchronous Fixability of a ternary network: “rock-paper-scissor” rule

2.1 Counting fixpoints120

2.2 Fixability on strongly connected graphs121

The main result is that this rule is Fixable on any strongly connected graph.122

I Theorem 5. Rock-paper-scissor rule is graph fixable on any strongly connected123

graph.124

To prove this, let us first introduce two notions that will be useful.125

I Definition 6. Let C be a cycle of a configuration C, it is said a-stable if there is no active126

site with state a ∈ S in the cycle.127

I Definition 7. Let C be a cycle of a configuration C, the discontinuity of the cycle is defined128

as the number of edge (vi, v′i) for which C ′(vi) 6= C ′(v′i).129

The discontinuity of a C is given by the sum of the discontinuity of all its cycle.130

Proof. To prove the result, we shall give an algorithm leading to a fixpoint. For this, we131

prove that our algorithm strictly reduce (except at the first step) the discontinuity of the132

configuration as long as it is not reaching a fixpoint.133

The algorithm is the following:134

Listing 1 Find Rock-paper-scissor fixpoint
s = 0
repeat

while there exist a site with colour s that can be activated
activate the site

s = s+1 mod 3
until a fixpoint is reached

The first easy remark is that after executing the while loop, the configuration is s-stable.135

Let us now consider what happen to the dicontinuity of a given cycle during the while136

loop (except the first one). As the previous while was done, the cycle is s− 1-stable. This137

implies in particular that any colour s in the cycle is followed either by s or s + 1. As we138

activate site in state s (and they become s + 1 in this case), site can only be activated once139

at most in the loop. Let us look at the set of activated site in the cycle. Each consecutive140

sequence of activated site is followed by a site in state s + 1 (since it cannot be s − 1 by141

stability and cannot be s because this site could be activated). Thus changing states of142

activated site have reduced the discontinuity by one at the end of each consecutive sequence.143

As it may only add one discontinuity at the start of the sequence. The discontinuity of each144

cycle decrease.145

Moreover, the first activation of a site in the loop is done by having a edge (v0, v1) with146

v0 in state c + 1. Since the graph is strongly connected, this edge belongs to a cycle and147

thus activation of this site will reduce the discontinuity by 1.148

Since discontinuity is an integer, the algorithm stops and reaches thus a fixpoint. J149

The given algorithm has two characteristics. First, it gives an exponential step solution150

to the fixability. Second, it depends on the configuration.151

One easy remark is that there exists a non strongly connected graph which is not fixable.152

F. Bridoux and G. Richard 23:5

2.3 Fixability on configuration153

I Theorem 8. Configuration Fixability for Rock-paper-scissor rule is NP-Hard.154

Proof. The reduction is done from SAT problem.155

0 1

2

0

0 1

0 0 0

2 1 0

(a) Variable encoding (b) not gate

1 2

0 1 2 2

2

0

0

0

0

0 0

0

1 2

0

(c) Value check (d) nand gate

Figure 1 Widgets

The constructed widgets have several vertices (depicted in red) without any inbound edge.156

Such vertices state will thus never change.157

To any SAT formula, it is possible to construct a (polynomial) configuration encoding this158

formula. We will prove that this configuration is fixable if and only if the formula is satisfiable.159

This is done in two steps: first, we prove that there is a fixpoint on the underlying graph that160

has the red vertices with there proper colours if and only if the formula is satisfiable. Then,161

we prove that, in the latter case, this fixpoint is reachable from the constructed configuration.162

The first initial remark is than any state without predecessors always keep the same state163

throughout the configuration. Such states are depicted in red in figure 1.164

Let us look at widget (c). As the left green 1 vertex has three predecessor with two165

fixed, the only possible value for the input state is one of the two fixed value (thus, 0 or 1).166

The same argument applied to the green 2 vertex implies that input must be either 1 or 2.167

Combining both make this widget ensure that input is fixed at 1 in any fixpoint. Using the168

same argument on the central vertex of widget (a) lead to the conclusion that this widget169

forces the output to be 0 or 1 in any fixpoint.170

For the widget (b), the key point is that given a vertex with two predecessors with distinct171

values, then the only possible value in a fixpoint is the greater value of the two. Applying172

CVIT 2016

23:6 Asynchronous Fixability of a ternary network: “rock-paper-scissor” rule

the previous remark, if the input of a not gate is 0, then, in a fixpoint, the leftmost vertex is173

necessarily 0, the central one must be 1 and the output 1. In the case of input 1, the vertex174

must be respectively 2,2,0. Thus this widget implements a not gate.175

The last is the nand widget. For this widget, we reuse the same argument as previously.176

The first remark is that the only possibles values in a fixpoint for the last but one rightmost177

vertex (pre-output) is either 1 or 2 and those values implies that the output is respectively 1178

and 0. If the left input is 1, then, it implies that the top-left vertex must be 2 in a fixpoint.179

If the right input is 1, then the top-right must be also 2 implying that the pre-output must180

be 2 and the output 0. If the right input is 0, then the top-right must be 0 and thus the181

pre-output 1 and the output 1. The case 0 as left input and 1 as right input also outputs 1182

by symmetry. The last case is when both inputs are 0. In this case, the top left and bottom183

left vertices must be 0. Due to the return edge inside, the two right vertices must be also 0184

and thus, the pre-output must be 1 and the ouput 1.185

With all this, we can deduce that if there is a fixpoint reachable from the initial state,186

then in this solution, the end result is 1, each variable is either 0 or 1 and each gate realising187

either not or nand. Thus the encoded formula is satisfiable.188

The last thing to do is to prove that assuming that the formula is satifiable, then our189

graph can reach this fixpoint. As the graph is a DAG, we can restrict ourself to prove how190

to reach the fixpoint for any widget separately.191

J192

2.4 About fixability on graph193

3 Conclusion and perspectives194

References195

1 Noga Alon. Asynchronous threshold networks. Graph. Comb., 1(1):305–310, 1985. doi:196

10.1007/BF02582959.197

2 Julio Aracena, Jacques Demongeot, and Eric Goles Ch. Positive and negative circuits in198

discrete neural networks. IEEE Trans. Neural Networks, 15(1):77–83, 2004. doi:10.1109/199

TNN.2003.821555.200

3 Julio Aracena, Maximilien Gadouleau, Adrien Richard, and Lilian Salinas. Fixing monotone201

boolean networks asynchronously. Inf. Comput., 274:104540, 2020. doi:10.1016/j.ic.2020.202

104540.203

4 Maximilien Gadouleau and Adrien Richard. On fixable families of boolean networks. In204

Giancarlo Mauri, Samira El Yacoubi, Alberto Dennunzio, Katsuhiro Nishinari, and Luca205

Manzoni, editors, Cellular Automata - 13th International Conference on Cellular Automata206

for Research and Industry, ACRI 2018, Como, Italy, September 17-21, 2018, Proceedings,207

volume 11115 of Lecture Notes in Computer Science, pages 396–405. Springer, 2018. doi:208

10.1007/978-3-319-99813-8_36.209

5 Benjamin Hellouin de Menibus and Yvan Le Borgne. Asymptotic behaviour of the one-210

dimensional “rock-paper-scissors” cyclic cellular automaton. Annals of Applied Probability,211

2020. URL: https://hal.archives-ouvertes.fr/hal-02084842.212

6 Nicolas Le Novere. Quantitative and logic modelling of molecular and gene networks. Nature213

Reviews Genetics, 16(3):146–158, 2015.214

7 Warren Mcculloch and Walter Pitts. A logical calculus of ideas immanent in nervous activity.215

Bulletin of Mathematical Biophysics, 5:127–147, 1943.216

8 Tarek Melliti, Damien Regnault, Adrien Richard, and Sylvain Sené. On the convergence217

of Boolean automata networks without negative cycles. In Proceedings of AUTOMATA’13,218

volume 8155 of LNCS, pages 124–138. Springer, 2013.219

https://doi.org/10.1007/BF02582959
https://doi.org/10.1007/BF02582959
https://doi.org/10.1007/BF02582959
https://doi.org/10.1109/TNN.2003.821555
https://doi.org/10.1109/TNN.2003.821555
https://doi.org/10.1109/TNN.2003.821555
https://doi.org/10.1016/j.ic.2020.104540
https://doi.org/10.1016/j.ic.2020.104540
https://doi.org/10.1016/j.ic.2020.104540
https://doi.org/10.1007/978-3-319-99813-8_36
https://doi.org/10.1007/978-3-319-99813-8_36
https://doi.org/10.1007/978-3-319-99813-8_36
https://hal.archives-ouvertes.fr/hal-02084842

F. Bridoux and G. Richard 23:7

9 Tarek Melliti, Damien Regnault, Adrien Richard, and Sylvain Sené. Asynchronous simulation220

of Boolean networks by monotone Boolean networks. In Proceedings of ACRI’16, volume 9863221

of LNCS, pages 182–191. Springer, 2016.222

10 Jean-Éric Pin. On two combinatorial problems arising from automata theory. In C. Berge,223

D. Bresson, P. Camion, J.F. Maurras, and F. Sterboul, editors, Combinatorial Mathematics,224

volume 75 of North-Holland Mathematics Studies, pages 535–548. North-Holland, 1983. doi:225

https://doi.org/10.1016/S0304-0208(08)73432-7.226

CVIT 2016

https://doi.org/https://doi.org/10.1016/S0304-0208(08)73432-7
https://doi.org/https://doi.org/10.1016/S0304-0208(08)73432-7
https://doi.org/https://doi.org/10.1016/S0304-0208(08)73432-7

	1 Automaton network and fixability
	1.1 Definitions
	1.2 Complexity

	2 ``rock-paper-scissor'' rule
	2.1 Counting fixpoints
	2.2 Fixability on strongly connected graphs
	2.3 Fixability on configuration
	2.4 About fixability on graph

	3 Conclusion and perspectives

