10

15

20

25

30

35

Leader election on finite labelled graph with
finite memory and anonymous agents

Nicolas Bacquey! and Gaétan Richard?

1 INRIA Lille, Université de Lille, CRIStAL,
Villeneuve d’Ascq, France
nicolas.bacquey@inria.fr
2 Université de Caen Normandie, UNICAEN, ENSICAEN, CNRS, GREYC,
Caen, France
gaetan.richard@unicaen.fr

Abstract. Given a finite graph of bounded arity on which lie several
active “agents”, the leader election problem consists in selecting exactly
one leader among those agents. In this paper, we consider the case where
it is possible to write a finite information on each cell and where anony-
mous agents have a finite memory and a local behaviour. In this case, we
give an algorithm that can achieve leader election in every case where it
is possible.

Introduction

Leader election is one of the main problems in distributed computing [1,2].
One of the origin of such a problem has to do with recreating a lost token on a
token ring [3]. In this context, processors endowed with a unique ID on a regular
ring must elect one leader. The main parameters are time and size of messages
needed to achieve election. As this problem is very generic and can be easily
formalised, it has been heavily studied in different contexts (e.g. asynchronous
vs synchronous) either reflecting “real life” situations or theoretical cases [41,5].

Here, we focus on the anonymous case where processors have no unique
identifier and thus are indistinguishable from each other [6]. In this case, they
must also extract information from the underlying structure. Thus, an interesting
parameter consists on information given a priori on the underlying structure and
its influence. In particular, knowing the topology, the exact size of the network,
or having an upper bound on the latter, change the solvability of the leader
election problem (or variations such as tree construction problem) [7]. In this
paper, we minimize the information given and we only assume that an upper
bound of the degree of the graph is known. In this context, leader election is not
always possible but limitations can be characterised with respect to symmetries
of the underlying graph formalised by the notion of fibration [3].

Rather than assuming that every node is an active processor, a further re-
striction is the use of agents where processors are replaced by a fewer active and
mobile elements [9]. The main difference with the previous case is that agents are

40

45

50

55

60

65

70

the only active elements. In this context, many algorithms have been developed
to solve variety of problems depending on conditions and goals: for example, one
can want to achieve rendez-vous when the graph is a tree [10] or with exactly 2
agents [11]. The case of exploration has also a received a lot attention [12]. In
most of these works, one objective is to minimize time or size of memory used
by the agent with respect to the size of the graph (in the feasible cases).

An alternative to the previous restriction is to consider the distributed model
of cellular automata that consists on having finite-memory processors work-
ing synchronously on a regular grid. For them, leader election was studied by
C. Nichitiu et al. in the case of finite portion of the regular grid by using the
shape of the portion to achieve leader election [13,14,15]. Recently, N. Bacquey
has proposed a new algorithm for leader election on periodic two-dimensional
cellular automata [16]. This paper aims to extend this algorithm to the generic
graph case.

To combine the two above restrictions, we consider in this paper agents en-
dowed with finite memory and we allow them to read and write finite infor-
mation on every vertex of the graph. In some way, this restriction can be seen as
using Turing heads on the graph. Moreover, we only consider the synchronous
case.

1 Context

In this paper, the model used is based on the model used in anonymous agent
setting and in particular the one in [9]. The model is simplified to the synchronous
case. For agents, the formalisation is derived from Turing head with additional
neighbourhood looking capacity.

1.1 Automata on graphs

In the rest of the paper, the underlying structure is a finite undirected multi-
graph of bounded arity d as in the example given in Fig. 1. This graph is enriched
by associating, for any vertex, a port to each outgoing edge ensuring determinism.
Without loss of generality, we take those labels among the set P = {1,...,d}.
In order to give a formal definition, it is easier to consider the labels to be put
on the edges.

Definition 1. A finite labelled undirected d-graph is a pair & = (V, E) where
V' is a finite set of vertexes and E C V x P x P xV is the set of labelled edges
satisfying that:

— P=/{1,...,d} is the set of ports;

— for any (v,p,p',v") € E, (v,p',p,v) € E;

— for any v €V, the set {p | I, p', (v,p,p',v") € E} is a subset of P without
repetition.

80

85

Fig. 1. Example of finite labelled undirected 4-graph

As some edges may not exist, some functions may be partially defined. To
have a more uniform presentation, we introduce a symbol | for undefined cases
and denote V+ = (VU {L}).

From such a graph, we define a mowve function (see Fig. 2), § : V x P — V+
defined as Vv € V,p € P,

5(v,p) = v’ if there exists p’ € P such that (v,p,p’,v') € E
YP) =\ L otherwise

We denote the return path as

[if (v,p,p,0(v,p)) €E
M(v,p) - {J_ if (S(U,p) = |

This function is extended for any argument in V- by §(L,p) = L for any
p € P and recursively any path p = po, p1,...,pr € P* by §(v, (po,p1,.-.,0k)) =
6(6(v,p0), (P1,---,pk)). In the same way, we can extend the return path p :

V x P* — P*J_ by IU/(Uﬂ (pOapla v apk)) = M(é(vap0)7 (pla v apk))M(UapO) when
this is defined (that is 6(v, p) # L) and L otherwise.

5(A,3)=D
0(A,311) =B
u(A,311) =433
5(B,433)=A

0(C,42) =L

u(C,42) = L

Fig. 2. Example of moves and return paths

90

95

100

105

110

The graph is connected if for any pair of vertexes v,v’ € V there exists a
path p € P* such that 6(v,p) = '

As we use only this structure in our paper, we shall refer to it as simply
graph:

Definition 2 (Graph).
In this paper, a graph & = (V, E) is a connected finite labelled undirected
d-graph. The size of a graph is denoted as N = |V|.

Over the vertexes of a fixed graph, we want to add some very simple undis-
tinguishable “agents”, automata with a finite memory, acting together. They are
able to read and write colours, and to move, akin Turing machine’s heads. This
is formally done by adding two layers to the graph evolving along the compu-
tation: The first one is a colouring of the vertex over a finite set; the second
one consists of automata described by their states. The absence of an automata
being depicted with L. The resulting element is called configuration as depicted
in Fig. 3.

Definition 3 (Configuration). For a graph & = (V, E), a configuration is
a pair (C,8) with: C : V. — C is a colouring of the graph with a finite set of
colours C, and 8 : V. — S+ where S is the finite set of states.

Fig. 3. Example of configuration

By convention, we extend C and & by C(L) = L = 8(1).

As we want both our vertexes and automata to be anonymous (undistinguish-
able), this means that vertex labelling is hidden in our model and an automata
has now way of saying whether or not a vertex reached by two different path is
the same or not (except when using the return path). To depict this, we define
the view of a vertex in a configuration as the set of information that an au-
tomaton can access. This is done by listing for any path, the colour, the state of
automaton and the return path of the vertex reached by this path (see Fig. 4).

Definition 4 (View). Given a graph & = (V, E) and a configuration (C,S),

us the view of a vertex v € V is defined as T(v) : P* — C+ x St x P** by

120

125

130

T (v)(p) = C(6(v,p)),S(6(v,p)), (v, p).

p |C(6(v,p)) S(é(v,p)) u(v,p)
€ 1 €
1 O 2
2 @) 3
3 1 3
4 @) 2
11 1 1 1
12 1 12

Fig. 4. Type of vertex A in the example

One first meaningful lemma is that this notion give birth to an equivalence
notion [17,9]:

Lemma 1. Given a graph & = (V,E) and a configuration (C,8), having the
same type is an equivalence relation whose classes have all the same size called
order and denoted as v (See Fig 5).

Proof. Tt is trivial that this notion is a equivalence relation.

Let V = (vk)o<k<n and V' = (v},)o<k<m be two classes of equivalence. With-
out loss of generality, we can assume n > m. As the graph is connected, there
exists a path p € P* such that d(vg, p) = v{, and a return path u(vo, p). As all el-
ements in V have the same type, we have for any 0 < k < n, u(vg,p) = p(vo, p)
and 6(vg,p) € V'. Since 6(0(vg, 1), u(vo, 1)) = vg, it follows that the function
v — d(v,p) is an injection from V onto V’. This implies that |V| = |V’|. O

1.2 Dynamics

Dynamics of the system is based on several independent finite automata on a
fixed graph. All automata follow the same local rule and are undistinguishable.
In our model, the locality is understood as the adjacent vertexes to the position
of the automaton (see Fig. 6). Formally, it can be defined as follows:

Definition 5 (Local view). Given a graph & = (V, E) and a configuration
(C,8) and a vertex v € V such that 8(v) # L, the local view L(v) € L = C X
Sx(CHxSExPH)P by L(v) = (C(v),S(v),{C(3(v,p)), S(8(v,p)), (v,) }pep)-

(a) A configuration of order 1 (b) A configuration of order 2

Fig. 5. Example of orders

One can remark that the local view corresponds to the restriction of the view
of the vertex to paths of length at most one. As the only active places are those
where an automaton is located, we restrict our definition to the vertex v where
there is an automaton (S(v) # L).

135 With this information, the automata makes three actions: it changes its in-
ternal state, it changes the colour of its current vertex, and moves to a new
adjacent vertex (or stays on the same vertex). All those actions are fully defined
by the local view. In pseudo-algorithms used in this article, those actions are
depicted by the words write, remove, or replace for colour interaction and move

uo or stay for moves.

Definition 6 (Automaton rule). An automaton rule is a total function F :
L—SxCx(PUe) where L=C x S x (C+ x S+ x PH)F.

4 4 4
! 21
14 5
2 4 2
3
1
(a) The graph (b) Local view from B (c) Local view from C

Fig. 6. Example of local views

The global evolution of the system is done by applying synchronously the
transformation of all automata on the graph as depicted in Fig. 7. Since there is

145

150

155

at most one automaton per vertex, the colour change does not pose any difficulty.
The move, however, suffers from concurrency: what happens when two automata
want to move into the same cell? This case is typical from concurrency and is
very difficult to avoid in general: in our model, one can note that two automata
can decide to move into the same vertex without seeing each other. In generality,
even enlarging the local view does not help as automata cannot guess the move
of each other.

There are several possible choices to deal with this situation: allow multiple
automata per vertex endowing the result of the merge with a mutliset of all
states, or give it a specific single state. In our case, we choose the later: if two
or more automata move to the same vertex, the result is a unique automaton
in a determined fixed merge state s,, € S (see step 2 of Fig. 7). This choice is
the most generic one and our construction can be adapted for many different
variations of merge.

(a) Initial step (b) At step 1

(a) At step 3 (b) At step 23 (z > 2) (c) At step 26 +1 (i > 2)

Fig. 7. Example of evolution.
There are two states: blue and red. In any case, the automaton paint its position in
green. If the state is blue, it follows the least outgoing edge to a yellow node and turn
red; Otherwise, it follows edge 4 . The merge state is blue.

160

165

170

175

180

Definition 7 (Image). Given a graph & = (V, E), a configuration (C,8), an
automaton rule F : L — S x C x (P U¢); the image (C',8') is defined by:

, ¢ if S(v) # L and F(LWw)) = (¢,)
Cv) = {C(v) otherwise

s’ if there exists a unique u € V', such that
S(u) # L, F(L(u)) = (-, ¢',4), and v =0(u,i)
S'(v) = s, if there exists at least two u € V, such that
S(u) # L, F(L(uw) = (1), and v =6(u,i)
L otherwise

Since all the automata behave the same way, the system preserves some sort
of “symmetries”. This can be formalised using the view: if two vertexes have
the same view in one configuration, then they also have the same view on its
image. Since vertexes of different types can become identical, the size of each
configuration class (the order) is increasing multiplicatively.

Lemma 2. Given a graph & = (V| E), a configuration (C,8) of order v and its
image (C',S") of order v' then V' is a multiple of v.

Proof. The proof follows directly from the fact that the image only involves
local views which are identical for vertexes having the same type. Thus the size
of equivalence classes in the image is the sum of several sizes of equivalence
classes of the configuration. As, by lemma 1, all those classes have the same size
v, the resulting size v’ is a multiple of v. O

Those “symmetries” could also be characterised in terms of homomorphisms
(often called fibration in this context) similarly as done in [18,19] but it goes
beyond the scope of our paper.

1.3 Leader election problem

With this system, we can finally state our leader election problem. The intuitive
idea is the following: given a graph and an unknown number of undistinguishable
finite automata, can they work together to “explore” the graph and elect a leader
among them without any prior or global information on the graph.

In a more formal way, we must define a starting configuration and some kind
of halting condition. For the former, it is easy to do: we start with the graph
coloured uniformly white and we put several automata on the graph all in the
same initial state as in Fig. 8. More formally:

Definition 8. Given a graph & = (V, E), co € C the initial colour, so € S the
initial state and Vy C V the initial positions, we define the initial configuration
(CO, 80) as:

sopifveVy
1 otherwise

Cov) = co, Vv €V, So(v) = {

185

190

195

200

205

Fig. 8. Example of an initial configuration with 2 automata

One first easy remark is that, if there is no automaton, then the configuration
does not change. So, we will always assume that [Vo| > 1. Another one is that
the number of automata is decreasing during the evolution.

With this initial configuration, we can choose an automaton rule and let the
dynamical system evolves.

To detect the end of the algorithm, one ideal method is to have each process
enter a terminal state (explicit termination). Since our case is anonymous and
do not have access to an upper bound on the size of the graph, it can be proven
that no explicit termination algorithm exists (see Theorem 9.8 of [2]). Thus, we
consider implicit termination: classically, it is defined as the step where no more
messages are exchanged between agents. In our case, the strongest transposition
would be that every agent does nothing and thus that the dynamical system
enters a fizpoint. However, we shall only achieve a weaker notion of termination
by considering when the system enters a cycle (which is always the case since
we have a finite number of possible configuration).

Due to the uniformity of our system, there are several cases when it is not
possible to distinguish between automata. This can be linked to the notion of
view presented above: initially, it is easy to see that, on a graph & = (V, E), an
initial configuration (Cg, Sp) has a number of automata multiple of its order v.
Moreover, this fact is preserved by evolution as stated in the following lemma:

Lemma 3. Let & = (V, E) be a graph and (Co,8o) an initial configuration of
order v. The number of automata presents in the evolution of the configuration
is a multiple of v.

Proof. Tterating lemma 2, we can deduce that, at any step, the order of a con-
figuration is a multiple of the initial order v. The number of automata being a
sum of size of different classes, it is a multiple of the order and thus of the initial
order. 0

It can also be seen that this lower bound also applies to “marks” written
on the graph. This allows us to give a formal (non-trivial) definition of leader
election: we say that the election occurs if, after some time, the number of

210

215

220

225

230

235

240

245

automata reaches the lower bound. Recall that since our evolution only destroys
automata, the limit exists and is stable once reached. Moreover, as we work on
a finite case, this limit is reached in finite time.

Definition 9 (leader election). A automaton rule F' achieves leader election
on the initial configuration (Co,8¢) of order v on a graph & = (V, E) if it
eventually contains exactly v automata.

The main result of this paper is that we can exhibit a “universal rule”, which
given a fixed arity, works for any graph and any initial configuration.

The construction will be a little stronger regarding the halt and allows to
“externally” detect the end of the process by the condition that all automata
enter a specific subset of states.

Theorem 1. For a fixed arity d, there exists an automaton rule F' that achieves
leader election on every initial configuration of any graph of arity d.

The rest of the paper is devoted to prove the result. The intuitive idea of
the algorithm is the following: each automaton is responsible for an exclusive
portion of the graph making use of a spanning tree. The algorithm is divided in
two steps.

The first step describes (in section 2) how each automaton make the expan-
sion of its own exclusive portion over any non-claimed space. This step ensures
that after some finite time the graph is partitioned into a forest of spanning trees
where each tree has exactly one automaton.

The second step is a look and merge procedure: while always staying in its
tree, every automaton looks at all its neighbours. The looking scheme is done
so that if two adjacent trees are different, the corresponding automata will see
each other and then merge together. This process is detailed in section 3.

All trees being identical is not sufficient condition to reach the minimal num-
ber of automata. In our case, we also need them to be regularly positioned. This
problem is dealt with in section 4 by enriching the previous looking scheme to
ensure merge when trees are not regularly positioned.

At last, we devote section 5 to bring all pieces together, study robustness of
our algorithm to variation of definitions, and propose some easy or challenging
possible perspectives for leader election.

2 Trees and Spanning forest construction

This section is devoted to present the first step of our leader election algorithm.
Starting from an initial configuration, this algorithm construct a spanning tree
forest partition where each tree has exactly one automaton on it.

First and foremost, the first action of any automaton in the initial state is to
mark vertexes that initially contains automaton using a layer (called init_pos)
on colour that will not be altered after this (Algorithm 1).

250

255

260

265

270

275

2.1 Tree encoding and successor

To encode the spanning rooted tree, we encode it by colouring the graph in the
following way: a specific state (o) encodes the root whereas each other node
consists of an integer f(v) € P indicating the direction to its father and a list of
its children (see Fig. 9).

During enlarging a tree or merging several trees, part of information stored
is incoherent: it may happen that a father point towards a child but this child
does not consider it as its father. For this case, we define the set of foster fathers
of an vertex v as the list of port for which v is a child other than its father (for-
mally: foster fathers(v) = {p|3p’,v’, (v,p,p’,v") € E, p’ € children(v’') and p #
father(v)}

Along the algorithm, we will always ensure that there is exactly one automa-
ton per tree.

Our algorithm heavily relies on the following notion of half-edge:

Definition 10 (half-egde).
A half edge is a pair (v,p) € V x P consisting of a vertex v and an port p .

An half edge is empty if §(v,p) = L. During the algorithm, an agent can
encode an half-edge by using only the (finite) value of a port, the vertex being
implicitly define by its position. In algorithms, we refer to the current half-edge
as CURRENT.

Definition 11 (mirror).
The MIRROR of a non empty half-edge of (v, p) as the half-edge (§(v, p), u(v,p))

For a tree, we define its size n as the number its vertexes®. An half-edge is
internal if it is part of an edge of the tree and external otherwise (see Fig. 9).
Note that the mirror of an external half-edge may belong to the same tree. The
initial half-edge is the edge (r,1) where r is the root vertex of the tree (this
half-edge is not necessarily internal). At last, an half-edge (v, p) is unclaimed if
either the vertex (v, p) or its mirror does not belong to a tree.

The basic brick of our algorithm is a traversal of all the half-edges inside the
tree using a depth first search approach as depicted in Fig. 10 and formalised by
the following definition of successor.

3 The value of n is always smaller than N the size of the graph

Algorithm 1 Initialisation
1: procedure INIT
2 write init_pos
3: stay in place
4: end procedure

280

285

290

295

300

(a) Encoding of a tree (b) Visual representation (c) Half-edges
In the last figure, half-edges are depicted in black for internal, blue for external, dark
blue for unclaimed and the initial one is overlined.

Fig. 9. Example of tree and half-edges classification

Definition 12 (successor). The SUCCESSOR of an half-edge (v, p) is

(v,p+1 mod d) if (v,p) is external
(6(v,p), p(v,p) +1 mod d) if (v,p) is internal

Since it include all half-edge (even if the edge does not exists in the graph),
the successor induces a cycle of length exactly d x n.

2.2 Spanning Forest covering mechanism and merge

A covering of the whole graph by a forest is done in the following way: initially,
each automaton (in the initial state) constructs a one-node tree limited to a root
made of their current vertex.

Then, we introduce an algorithm that starting on the initial half-edge of
an existing tree extends it maximally by running cycling thought successors
incorporating any unclaimed half-edge it encounters.

This is done by going to the new vertex along with adding it as a children
in the parent node (this creates a foster father on the new vertex). Then, the
automaton marks the parent direction f(v) in the new node and can continue
the round from here (see Fig. 11). To be completely precise, the claiming does
not occur if an automaton is present on the other side of the half-edge (since
this automaton is in the process of claiming it).

The algorithm stops when it reaches the initial half-edge again.

One important point is that, since the round goes into the next half-edge
only if it is claimed, the resulting tree at the end of Algo. 2 has no unclaimed
half-edge.

A problem occurs in our algorithm when two (or more) automata claim the
same vertex simultaneously without having seen each other. In this unavoidable
case, the result is the following: we end with an automaton in the merge state

Fig. 10. Cycle of half-edges induced by successor relation in a tree with d = 4 and

n=3

Fig.11. An example of execution of Algo. 2 when MIRROR.vertex is not inside a tree

Algorithm 2 Spanning forest algorithm
1: procedure TREE
2: repeat

3: if MIRROR.vertex is not inside a tree then

4: write (add) CURRENT.port to children

5: move to MIRROR.vertex > May lead to collision
6: write foster father to father

7 move to SUCCESSOR of (CURRENT.vertex, foster father)

8: else

9: remove all colours except father,children, and init_pos

10: > Do nothing at the moment
11: move to SUCCESSOR
12: end if
13: until CURRENT is intial > This condition is check before the previous move

14: end procedure

305

310

315

320

(over a vertex not belonging to any tree) that has at least two foster fathers,
each being a distinct tree (that the automaton is responsible for).

Here, we choose to attach all other trees to the one accessible by the smallest
index in the way depicted in Fig. 12. To do this, the automaton selects the largest
foster fathers and goes back to the root of the automaton mirroring edges along
the road; when it reaches the old root, it transforms it into a standard node
and goes back to the vertex where the merge occurred (it can be done by going
back in the tree until encountering a node without a parent). The automaton
repeats the previous step until the merge vertex has only one foster father. In
this last case, it simply transform the merge node it into a standard node and
goes back to the root. At this point, it simply restarts the Algorithm 2. This
can be written in Algorithm 3.

Algorithm 3 Merge trees (first version)

procedure MERGE
repeat
if —foster fathers— ; 1 then
move to max(foster fathers)
while CURRENT.vertex is not a root do
replace father with foster father
write (add) old father to children
move to old father
end while
end if
write foster fathers to father
while father exists do
move to father
end while
until CURRENT.vertex is root
stay in place
end procedure

This algorithm achieves the desired result:

Proposition 1. After a polynomial time, the application of Algorithms 2 and 3
starting from an initial configuration ends on every automaton and achieves a
spanning forest.

Proof. The first easy remark is that the size of any tree is always increasing.
Locally, the automaton goes back to its father only if all adjacent half-vertexes
are also in a tree. Thus, there is no unclaimed half-vertex adjacent to the tree
once the algorithm finishes.

For the complexity, let us do a rough estimate: the maximal time for a tree
to do a full walk when not interrupted by a merge is dn. If a merge happens, the
tree grows by at least one and merge takes at most 2n steps. So there can be at
most N merges leading to a O(NN?) bound on spanning forest construction. 0O

325

330

335

340

Fig. 12. Example when a merge occurs using Algo. 3

2.3 About merges

Before going in the next step of our algorithm, let us take some time to discuss
about merge procedure. In fact, this merge is the only case where it happens on
an uncontrolled way.

One first interesting remark is that our construction is very robust to vari-
ations in the choice of the merge process. In most other definitions (using a
Cartesian product of state in the result, ...), the algorithm presented stays
valid.

One other remark is that in our specific case this problem can be totally
avoided by allowing the automata to have a local view of radius 2. In this case,
any automaton willing to claim an empty vertex can see all other automata that
wish to do so (and vice-versa) since the decision only involve the automaton and
the state of the target vertex. Using the full order of the edge of the claimed
vertex, we can ensure that exactly one automaton claims it.

2.4 Tree word

To characterise a tree, we associate with each tree a Tree word consisting in
listing the half-edges encountered during a round (See Fig. 13). It is easy to see
that the encoding is injective with respect to the tree and that the size of the
word is dn. So this word encodes, in some sense, the local structural aspect of
our configuration. To ease the work on the second layer, we prefix this word by
a two letters prefix #S. The letter S will be used in section 4 to do one step of
Algo. 10 and the letter # serves as a placeholder to guarantee concurrency.

345

350

355

360

365

370

We also add, using a Cartesian product over letters the fact that the vertex
had an automaton in the starting configuration (see Fig. 13).

Definition 13 (Tree word).

The tree word associated to a tree is the sequence of half-edges’ indexes en-
countered during a round along with their status: internal or external, prefized
by #S.

Tree word:
#S134122341234

Tree word with initial
automaton input of Fig 8:
#5134122341234

Fig. 13. Example of tree word (see also the associated round in Fig 10)

One immediate point is to be able to use this word in our algorithm. Since we
work with finite memory, we cannot store at one place the whole word. Thus, we
design an algorithm that can extract on letter of the word at each call (writing
it on the initial half-edge) and cycle when reaching the end of the word. The
idea is to have a mark (called tree_word mark) on the half-edge corresponding
to the current letter. Starting from the initial half-edge, the agent goes through
all half-edges of the tree (using successors). When it encounters the tree_word
mark, it store in its state the encoding of the letter and move the tree_word mark
to the successor (see Algorithm 4).

To be complete, we must correctly deal with the # and S letters: we add a
marker (S mark) only located on the initial edge; the case # is remembered by
having no marker present. We can thus complete the algorithm as depicted in
Algorithm 5. In a high view, this agent perform a full cycle of all half-edges.

Lemma 4. Algorithm 5 allows to compute the encoded value of next tree word
letter starting from the initial half-edge doing a full cycle.

3 DMerging trees by looking and waiting

After having constructed a spanning forest, the second part consists in merging
trees until they are all identical. To avoid most of difficulties, the underlying
idea is that each automaton is stuck to its tree and does not interact with other
tree unless explicitly specified.

Algorithm 4 Compute next letter of tree word (simplified version)

1:
2:

3
4
5:
6:
7
8

9:
10:
11:
12:
13:
14:

procedure NEXT_TREE_LETTER

value = None > Stored in the agent’s state
repeat
if CURRENT has tree mark then > Current letter

value = encoding(CURRENT)
remove tree_word mark
move to SUCCESSOR
write tree_wordmark
else
move to SUCCESSOR
end if
until CURRENT is initial
write value
end procedure

Algorithm 5 Compute next letter of tree word

N R R R el e

procedure NEXT_TREE_LETTER

value = None > Stored in the agent’s state
repeat
if CURRENT is initial and has S mark then > S case

value = encoding(.S)
replace S mark with tree_word mark
move to SUCCESSOR
else if CURRENT has tree mark then > Current letter
value = encoding(CURRENT)
remove tree_word mark
move to SUCCESSOR
if CURRENT is not initial then > Done unless it is the last letter
write tree_word mark
end if
else
move to SUCCESSOR
end if
until CURRENT is initial
if wvalue is None then > # case
value = encoding(None)
write S mark
end if

write value

: end procedure

375

380

385

390

395

400

405

410

The algorithm main idea is the following: each automaton will either be
looking or waiting on an half-edge. When, a looking automaton see a waiting
one on the mirror half-edge, they both merge their trees. To ensure that this
happens, the key point is to exploit synchronism alternate waits and looks in
such a way that “different” adjacent pair of trees, one will be looking on a
half-edge and see a waiting mark of the other on the mirror half-edge.

This section is divided in three subsections: first, we give the high level de-
scription of the main alternation algorithm in section 3.1. Then, we give the
necessary detailed implementation of the algorithm in section 3.2. At last, we
prove in section 3.3 that this merging procedure will reduce eventually the num-
ber of trees until they are all “identical”.

This section gives the algorithmic core of our construction but is not suffi-
cient: in fact, it depends on an encoding of a tree (but not its neighbourhood).
To ensure that having “identical” trees means that leader election is achieved,
this sequence must be enriched with some additional elements. This is done in
section 4.

3.1 Alternating looks and waits

Here, we shall describe the algorithm alternating between looks and waits phases.
For the rest of the subsection, we consider a tree of size n (number of vertexes).

During the algorithm, the agent will either be considered looking or waiting
on an half-edge. For such a tree, waits will have a quadratic time in its size. As
this value will be a key point, we introduce it as follows:

Definition 14 (Waiting time).
The waiting time is defined as 7(n) = Kdn(dn + 1).

With this tool, we can describe our main base synchronisation algorithm:
the idea is to wait on every half-edge along with doing a full round looking
between waits. As such, we can ensure that despite the wait, the automaton
is regularly looking at every half-edge. After waiting on all half-edges, we just
repeat a variable number of time looking rounds (according to some letter in
the characteristic word computed in an initial looking cycle) in order to add a
slight but sufficient desynchronisation for the case of trees with the same size.
The algorithm also contains an initial looking round that will be used latter to
compute the integer associated with letter of the tree word one example of such
a cycle is given in Figure 18.

Lemma 5 (Look and wait high-level algorithm).

0 Do an initial looking cycle (performing NEXT_TREE_LETTER);
1 Wait 7(n) on the current half-edge;

2 Go to the next half-edge;

3 Do a looking cycle;

4 Repeat from step 1 until reaching the initial half-edge;

5 Do w; looking cycles.

1 1 1 1

2 2 2 2
1 1 1 1

t=0 1 2 3

2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2
1 1 1 1 1 1 1
4 5—=44T1 5+T 6+ 7 T+T 8+ T 9+ T
2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2
1 1 1 1 1 1 1
104+7 1147 —=104+27 |11 4+ 27|12+ 27 13+ 27 14+ 27 154 27
2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2
1 1 1 1 1 1 1
16 +27 (17+ 27 —- 16+ 37|17+ 37|18 +37 19+ 37 20+ 37 21 + 37
2 2 2 2 2 2 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2
1 1 1 1 1 1 1
22+37 (23 +37 = 12+ 47|23 +47 |24+ 47 25+47 26+ 47 27+ 4T
2 2 2 2

1 1 1 1

2 2 2 2
1 1 1 1

28 +417 29+ 417 30+ 47 31 +4r
repeat ¢ times
2 2 2 2

N
N
N
N

Fig. 14. Example of a cycle run (upper node is A, bottom one is B).

To easy understanding of the proof, we introduce in Fig. 15 a representation
of the evolution of looking at a fixed half-edge.

t
A~
36447 - R Sl €
32+4T,;;,,d,,,,__,,—f,,,,,,,,,,
28+4T,55,3,:@,,__,,—2,,,,,,,,,,
24441 A~ Y —
AN
T
v
19+37 = g - - m———T T oo
1 A -1
vl T
v w-cycle
14427 | X —
v TI
9+ T ,E},\r,,,,__,,_,_,,,,,,,,,,,
5471 4 — o
TI
4 i e —t— A _ & [T
0 ,Ei ,,,,,,,,, ,_f,,_,T ,,,,,, ~

(A,1) (B,1) (B,2) (A,2)

Blue bars mark the time the automaton is present in the look state, plain dark
orange line indicates the waiting mark is on this half-edge and dotted dark orange
line times a waiting mark is on another half-edge.

Fig. 15. Symbolic representation of the cycle doing 3 additional round depicted in
Figure 14.

In the following, we will mainly base our proofs on the two following facts
as about the lock and wait algorithm.

Lemma 6. Algorithm Look and wait depicted in Lemma 5 ensures that:

— the waiting time is 7(n) = Kdn(dn + 1);
— on any half-edge, the mazimal time without a looking automaton is v(n) =
7(n) +dn;

420

425

430

435

440

445

450

455

Proof. The first point is evident by lemma 7.

For the second point, we change the focus from the automaton to the half-
edge as done in Fig. 15. The longest time between two consecutive looking pass
happens when the automaton has waited on another half-edge. In this case,
the automaton has waited 7(n) steps, looked one time at any other half-edges
(dn — 1), and looked one additional time on the waited half-edge. Thus we have
WR(n)=71(n)+dn—1+1.

If at some point, a looking automaton encounters a waiting mark on the
mirror half-edge, both tree merge. As waiting and looking are exclusive, this
ensures that exactly two distinct trees merge. Timing is chosen so that this
encounter will eventually occur for different neighbouring trees (see section 3.3).

3.2 Implementation

The previous high-level vision hides several difficulties induced by our model.
This section details implemetation.

‘Wait

One key element of our algorithm is that we design a method to wait for a
quadratic time O(n?) (in the size of the current tree). However, due to the finite
memory of our agent, it is impossible for it to stay more than a finite time on
a vertex without looping indefinitely. The solution is to resort to active waiting
where the agent put a wait marker and does some “useless” uninterrupted loop
to count time. Thus, the wait algorithm is based on using the cycle of successors
defined in Definition 12 that takes dn steps to complete. The core method to
construct a quadratic time is to make a round each time we make a step of the
initial round as depicted in Fig. 16 using as step marker (used as pebbles are

in [20]).

Lemma 7. Starting from looking at an half-edge, Algo. 6 does leave a mark for
exactly T(n) steps and then ends looking at the half-edge again.

Proof. The behaviour is clear so we only need to look at the time spent waiting.
The inner loop is done exactly dn times and does one step. The outer loop
thus takes (dn + 1) steps and is also done exactly dn times.
The whole algorithm is slowed down by a factor K. a

Merge

We shall now describe the merge procedure: this procedure is started when
an automaton, looking at one half-edge, see a waiting marker on the mirror half-
edge. As looking and waiting are mutually exclusive, this means that the marker
belongs to another tree where an automaton is waiting. In this case, the looking

1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1
4 2 Z N 2 Z N 2 4 2
33 33 33 33
32 392 32 32
1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1
Z N 2 7 N 2 Z 2 Z N 2
33 33 33 33
392 32
1 1 1 1
2 1 2 1
g 2 Z N 2
33 33
32
1 1
2 1
4 2
33
32 32 32
1 1 1 1 1 1
2 1 2 1 2 1
Z N 2 Z N 2 Z N 2
33 33 33
32 32
1 1 1 1
2 1 2 1
Z 2 N 2
33 33

Fig. 16. Example of wait
The wait marker is depicted by symbol | the wait pebble by a) During the round,

the automaton is in state <O but can take the state O to indicate it carries the wait
pebble.

460

465

470

Algorithm 6 Wait
1: procedure WAIT

2: write CURRENT wait marker

3: repeat

4: write CURRENT step marker A

5: repeat

6: move to SUCCESSOR

7 until CURRENT has step marker
8: remove step marker

9: move to SUCCESSOR

10: until CURRENT has wait marker
11: remove wait marker

12: stay in place
13: end procedure

automaton marks the parent direction and goes in the marker place . It stays
there until the other automaton arrives and they both merge (see Algorithm 7
and Figure 17). By construction, we ensured that if there is a waiting mark, the
automaton that is associated with this mark is ensured to be present in time
linear relative to its tree size.

Algorithm 7 Look

1: procedure LOOK
2: if MIRROR.vertex has wait marker then

3: write (add) MIRROR.vertex to Children

4: move to MIRROR.vertex

5: loop > loop doing nothing until a merge occurs
6: stay in place

T end loop

8: end if

9:

end procedure

Once merged, the new automaton is in the same merge state as when the
merge occurs in the spanning tree construction. However, it can know it is in a
merge operation since the vertex, it is currently in, belongs to a tree (that is,
the current state contains a father).

At this point, the automaton has just to go to the foster parent marker and
to go back to the root of the tree inverting edges along the road (as was done in
the first merge procedure Fig 12). Once done, the automaton is in a fully correct
tree and can go back to the root of the tree. The former is already done in the
first merge procedure and the latter is also already present. Thus, we only need
to add an additional condition to the if statement and reuse the same procedure
(see Algorithm 8).

N -
i
N
i
N -
-

Fig.17. Case when a merge occurs

Reusing the previous merge implies that once trees are merged, the agent

will relaunch the spanning forest algorithm before restarting the (yet to define)

a5 main alternation. This is not a problem and even a good thing since we must

clean all (non tree) information on the new merge tree and this was planned on
line 9 of spanning forest algorithm (Algorithm 2).

Algorithm 8 Merge trees (second version)
procedure MERGE
repeat
if —foster fathers— ; 1 or (father exists) then
move to max(foster fathers)
while CURRENT.vertex is not a root do
replace father with foster father
write (add) old father to children
move to old father
end while
end if
write foster fathers to father
while father exists do
move to father
end while
until CURRENT.vertex is root
stay in place
end procedure

Algorithm

480 The formal full definition of the algorithm is given in Algorithm 9 and de-

picted in details in Figure 18. This implementatiton is compatible with the high
level description.

32 32 32
1 1 1 1 1
2 1 1 -2 1
33 33 33
Start COMPUTE_LETTER (LINE 2)
32 32 32
Y 2 N 2 A 2 2 \ 4
1 1 1 1 1 1
1 -2 1 2 1 1
33 33 33
32 32 32
\ 2 o ¥ 2 \ 4 2 \ 2
1 1 1 1 1 1
1 .9 1 2 1 1
33 33 33
32 32 32 32
1 1 1 1 1 1 1 1
1 -2 1 2 1 1 .. 2 1
33 33 33 33

WAIT (line 4)

move (line 9)

repeat (line 7-10

w
N

32

1

1 .-
33

repeat (line 15-18

32
1 1 1
1 cee 9 1
33 33
32
1 1
2 1
33

Fig. 18. Example of w;-cycle

485

490

495

500

Algorithm 9 Cycle
1: procedure CYCLE

2: COMPUTE_LETTER > w; is written on initial half-edge
3: repeat

4: WAIT

5: move to SUCCESSOR

6: write look peeble

7 repeat

8: LOOK

9: move to SUCCESSOR

10: until CURRENT is look peeble

11: remove look peeble

12: until CURRENT is initial

13: repeat > (w; times)
14: replace (decrease) CURRENT counter > Current is initial
15: repeat

16: LOOK

17: move to SUCCESSOR

18: until CURRENT is initial

19: until CURRENT counter is zero > Current is initial

20: end procedure

3.3 Prove of merges are occurring

Now that we have described our algorithm, let us see and prove it works. Core
of the proof is to show that merges will occur until all automata are on identical
trees. Here, we treat two distinct cases: whether sizes of the trees are different,
or whether they have the same size but different characteristic sequences. The
precise definition and construction of the characteristic sequence will be done in
section 4.

Trees with different sizes merge

Proposition 2. Given two automata A and B that are on adjacent trees of
different sizes, then at least one of them will enter the merge procedure (in a
polynomial time in the larger size).

In this case, the intuitive idea is that the quadratic wait allows the larger one
to wait sufficiently to ensure that the smaller one will be looking at it during
the wait.

Proof. Let us assume that neither A, nor B merges with another (third) au-

tomaton; then we will prove that they will merge together in polynomial time.
Let us denote as n,, (resp. np) the size of A (resp. B) and assume that n, > ng.

Since A and B are adjacent, there exists (at least) an edge between then.

505

510

515

520

525

530

Let us look at what happens during the time A is waiting on this half-edge
using times given in lemma 6. On the one hand, the waiting mark for A will stay
for 7(n,) = Kd?n4(n, +1). On the other hand, automaton B is ensured to pass
looking on the opposite of this half-edge every 1+ v(np) = 7(np) + d * np + 1.

Then, we can show that:

T(ng) = Kdng(dng + 1)

7(ng) > Kd(np + 1)(dny + 2)

T(ng) > Kd(np)(dny, + 2) + Kd(dny + 2)
7(ng) > Kd(ny)(dny + 1) + Kd*ny, + 2Kd
7(ng) > 7(ng) + dnp + 2
T(ng) > v(ng) +1

This implies that during the time the automaton A has waiting marker on
the half-edge, the automaton B will be looking at this half-edge and thus initiate
a merging.

Now, consider the time needed for a merge to appear: a rough estimate can
be done as follows: the merge occurs during any w-cycle of A. Time for such
a cycle is in O(n3) and it appears in look and wait algorithm after at most
O(ng) (the additional rounds). Thus the former gives a polynomial bound on
the occurrence of a merge. O

Trees with same size merge

If both trees have the same size, the idea is to use the characteristic sequence
to differentiate them. As we do not have any information on when the wait and
look algorithm is started on each tree, there may be a shift between the letters
considered in each characteristic sequence. Thus, we consider the case when the
sequences c,c € C* are asymptotically different — formally, for any 7,7’ € N,
there exists k € N such that ¢;4r # ¢ir4k.

The idea is to prove by contraposition by studying when trees do not merge.

Proposition 3. Let A and B be two automata that are on adjacent trees of
same size. If they do not enter the merge procedure, then their characteristic
sequences are asymptotically identical.

The rest of the section is devoted to prove this proposition. Let n = n, = ng
be the common size.

In this case, the key point is the number of additional rounds done at the
end of a w-cycle. The idea is that they will introduce some small shift between
the behaviour of the two automata leading to their merge.

First, let us show that there exists some kind of “synchronisation” between
the two automata. Same as previously, let us look at what happens during the

v=17+n+1

Fig. 19. A comparative vision of behaviours on two mirror half-edges h and h’ during
more than one w-cycle. The left h’ representation use constraints at the beginning of a
cycle and assume the two cycles are not identical; the right one use the same constraint
at the beginning of the next cycle. Combining both ends in the contradiction explained
in the proof. For concision, some values are not realistic (for example, we use A = n.

535

540

545

550

555

560

565

time A is waiting on one fixed half-edge h adjacent to A’ in B (see Fig. 19).
Since both have the same size, we cannot hope that B will pass looking at this
half-edge during the wait. However, if B does either wait or look, the fact that
B does not look at this half-edge implies that it also does wait during part of
this time.

Let us look at the (only) wait of B during the wait of A. Let us define as
desynchronisation A the number of steps between the start of the wait for A
and the one for B. Since before starting to wait, B does a full looking round
and has not encountered A waiting, it implies that A < dn. The same way, since
B is doing a step then a full looking round after waiting, we can deduce that
—dn < A.

This notion will be the key to prove the following lemma which will also be
reused latter.

Lemma 8. Let A and B be two adjacent trees of the same size that do not
merge with each other. When A is waiting on a half-edge adjacent to B during
a wg-cycle, B is also doing a wy-cycle with wy = w,.

Proof. Using the previous paragraph, when A is looking on an half-edge adjacent
to B, then B is doing some w;-cycle with a desynchronisation A.

By contradiction, let us assume that w, # w as in Fig. 19.

Let us look at what happens when A is looking at the same half-edge in the
next cycle. Since letters are different, the lengths of the two cycles differ by A
which is at least 3dn and by at most 3|C|dn (formally 3dn < |A] < 3|C|dn).
Thus, we can deduce that B starts a wait A 4+ A after (or before) A starts its
wait.

We can compute that 2dn < |A] — |A] < |A+ A] < A+ |4] < 3|C] +
1)dn. Since this value is not compatible with the desynchronisation, this implies
another start of waiting for B exists A’ after (or before) A starts to wait for B.

Those two starts of wait are separated by at most: |A + A| + |A’|. However:

|A+ A+ |A'| < (3|C| + 1)dn + dn
|A+ A+ A" < (3|C] +2)dn

and
(3|C| + 2)dn < Kd*n(n + 1) = 7(n)

for sufficiently large K (since n > 1 and d > 1).
This would imply that both starts are refer to the same moment and thus
A4+ A=A The fact that |A" — A| < 2n < |A] achieves the contradiction. O

To prove proposition 3, we associate to any cycle done by A reading a letter
an identical cycle done by B. Since this association is injective, they have the
same characteristic sequence. Of course a corollary of the previous result is that
automata with asymptotically different characteristic sequences merge.

570

575

580

585

590

4 Extending tree word to neighbours

Fig. 20. Example of identical trees with a non regular placing: both trees have the tree
word #8123123

In this part, the idea is to extend the sequence in order to get information
about the path to the neighbour tree’s root for each external half-edge.

The main problem about this piece of information is that it is outside the
tree. Since keeping the automaton inside the tree is one of the essential property
of our algorithm, we design a specific way of retrieving the path: each automaton
is responsible to put this information for every of its external half-edge so that
its neighbours can get this information from their respective trees.

The basic idea is to start by putting the index of the father on each vertex
and then push the indexes from the root to the leaves until no more indexes are
left (see Fig. 21).

Algorithm 10 Sending path to edge
Starting from a tree with € on each vertex:

1 Put the index of its father on each vertex (p for the root);

2 push the index currently in the father to all of its children (and add an € on the
root);

- if there still exists a non € symbol, repeat 2; otherwise restart from 1.

The algorithm is executed one step for each full repetition of the tree word.
More precisely, one step is executed during the initial round of letter S.

Now, the idea is to read this data from the neighbour’s tree and incorporate
into our sequence. This is done by taking the value when looking at the letter
of the tree word corresponding to any external edge as depicted in Fig. 22. As
a special case, when the value is p, the automaton take the return path of the
half-edge.

If we avoid a lot of potential concurrency problems by keeping every automa-
ton to its tree, there still is a question of synchronisation during the transmission

595

600

605

610

Fig. 21. Example of sending path to edge algorithm

D O o X

#S131223121123 #8131223121123 #S131223121123 #S131223121123
2 23 1 3 3¢ 2 € € € 2 € € € €

Fig. 22. Example of full characteristic sequence

of the path. For our case, we just need to prove that it works for trees of the
same size, leading to the following proposition:

Proposition 4. Let w be a characteristic sequence of a tree T of size n. Let T’
be an tree of the same size n adjacent by a fixed half-edge, then the path from
the half-edge to the root of T' is determined by the sequence of T.

Proof. Notice that since we assume the existence of the sequence, we assume
that no merge occurs.

Since it is trivial that the word sent by T” removing the last letter correspond
to the path, the only point to prove is that the sequence read by T is effectively
the one sent by 7" and can be recovered from the infinite sequence.

To prove this, the first step is to show a synchronisation fact: between two
consecutive reads by T, T" does exactly one write (a step of sending to path).
For that, remember that each step of sending to path is done at the beginning of
the S-cycle. By lemma 8, at some point during the S-cycle of T”, T is doing also
a S-cycle. Thus, we can deduce that this step occurs either during the S-cycle of
T or during the previous #-cycle (since we can without loss of generality force
that a #-cycle is longer than a S-cycle by choosing the encoding of # to be larger
than the one of S). As all reads are done outside of those cycles, this conclude
read letters are exactly the one present throughout the execution of the sending
path algorithm.

615

620

625

630

The next step is now to extract the path from the infinite sequence. To do
this, it is sufficient to notice that the path starts from the first non-¢ letter (and
ends with the last but one letter of this kind). O

5 Full algorithm, conclusion, and perspectives

5.1 The global algorithm and its proof

Let us combine all the previous elements to achieve the main result. The global
algorithm consist just on doing a forest spanning algorithm followed by an (in-
finte) look and wait algorithm.

Algorithm 11 Leader election algorithm
The leader election algorithm is achieved by doing, starting from the initial state:

0 Initially mark the vertex (corresponding to positions of automata in the starting
configuration);

1 Do a pass of spanning forest algorithm (Algo. 2); If in the merge state but not on
a tree, execute merge I (Algo. ??) and start this step again.

2 Repeat look and wait algorithm (Algo. 6) with characteristic sequence computation
as depicted in section 4 and doing a merge II (Algo. 8).

To prove the good behaviour of our algorithm, let us take three steps: first,
let us prove that the algorithm converges to a state where we have a covering
of trees with the same characteristic sequence. To refine this result, let us show
next that this convergence occurs in polynomial time. At last, let us prove that
leader election is achieved.

Proposition 5. Starting for any initial configuration on a d-graph, the leader
election algorithm reaches a cycle where the graph is covered by trees with the
same characteristic sequence.

Proof. The first easy fact is that there is only a finite number of merges as it
reduces the number of automata.

One can remark that an automaton in a merge state can distinguish whether
it is in step 1 or in step 2 by looking whether there is a tree mark on the colouring
of the current vertex and thus determine if it must use merge I or merge II.

The fact that trees achieve a coverage is directly derived from proposition 1
and is preserved by look and wait algorithm since it does never remove a vertex
from a tree and does not interfere with the spanning forest algorithm as the
automaton only exits its tree to go into a waiting half-edge which can only occur
if the corresponding other automaton is also on the look and wait algorithm.

Once all automata are in the look and wait algorithm, a merge will occur
if there is two neighbouring automata that either have different sizes (proposi-
tion 2) or have the same size but asymptotically different characteristic sequences

635

640

645

650

655

660

665

(proposition 3). Since the number of merge is bounded (and since our graph is
connected), it implies that eventually all trees have asymptotically the same
characteristic sequence. Since the common characteristic sequence is periodic, it
immediately implies sequences are equals. a

As an important note, let us look at the efficiency of our algorithm. This
analysis is far from optimal but we can still easily prove that our algorithm
works in polynomial time.

Proposition 6. The previous convergence is achieved in polynomial-time.

Proof. Let us follow the previous proof method looking at time. Let n be the
size of our graph (that is also a upper bound on tree sizes).

The number of merges is bounded by n.

The covering described by proposition 1 is bound by O(n?) (given in the
proof).

For different size trees merging (proposition 2), the merge will occur during
the time the automaton in the larger tree wait on the adjacent half-edge and so
will occur before the end of the first w-cycle (thus in O(n?) time) and last O(n)
steps. As there is at most n merges, all trees will have the same size after at
most O(n(n® +n)) = O(n*) steps.

For same size trees with different characteristic sequences, the merge will
occur before the next cycle after the first different letter is encountered (see
proof of proposition 3). The characteristic sequence is constructed by repeating
the tree word (of size O(n)) changing at each repetition the second layer over the
path word which is also of size O(n). This implies that the characteristic sequence
is of period O(n?) and thus that the merge occurs before O(n? * n?) = O(n’)
and still lasts O(n). The already used limit of n merges implies no merge occurs
after O(nf).

Combining all those bounds gives us a O(n®) bound. O

Last but no least, let us prove that when we have identical trees, leader
election is achieved.

Proposition 7. If the graph is covered by trees with the same characteristic
sequence then leader election is achieved.

Proof. By definition 9, achieving leader election means that the number of au-
tomata is equal to the order of the initial configuration. As there is exactly
one automaton per tree and that the lower bound is enforce by definition, it is
sufficient to prove an upper bound on the number of trees.

As the order is the cardinal of all equivalence classes over the type, it is
sufficient to prove that the initial type of a vertex in a tree is fully determined
by its position in the tree.

Recall (definition 4) that the type is a function over the possible path giving:
the colour of the reached vertex, the state of any present automaton and the
return path. As we consider the initial configuration, the colour is necessarily

670

675

680

685

690

695

700

705

710

the initial colour and the automaton is in the initial state. Thus, it is sufficient to
check whether an automaton was here or not (which is recorded by a marker on
the vertex in the current configuration) and the return path (for completeness,
note that the return path gives the information on the existence of a vertex
reached by the path).

Let us prove the latter using a recurrence over the length of the considered
path.

For path of length 0 (that is for €), the only needed piece of information
(initial presence of an automaton) can be read in the current colour of the
vertexes. As this data is used in the tree word, it is the same for all vertexes at
the same position in a tree.

Let us now take a path p = pop’ with pg € P and distinguish according to
the first half-edge taken by applying pg. Since the trees are the same, the cases
are the same for all vertexes in a same position.

— If the half-edge is empty then the result is L.

— If the half-edge is internal, as the trees are all the same, the return letter
having taken pg is the same and the reached vertex has the same position for
all vertexes at the same position in a tree. Applying the recurrence property
allows to conclude.

— If the half-edge is external, then the two previous information can be recov-
ered looking at the second layer of the characteristic sequence (see proposi-
tion 4), leading to the same conclusion as in the previous case.

O

From those three previous propositions, we can immediately deduce our main
theorem 1.

5.2 Robustness and extensions

Let us now look at some more properties of the algorithm that do not directly
appear in the current statement.

The first point is to look at the end mechanism: the algorithm ends in a
loop. Moreover, each automaton can estimate the polynomial bound sufficient to
ensure that all its immediate neighbours have the same characteristic word. They
can enter thus a specific subset of states to have a global halting condition of all
automata being on this subset of states. In the one dimensional similar case [21],
one trick is used to erase all intermediate states used during the algorithm, to
end in a fixpoint, and to recover the erased data when needed. Doing a recover
phase in our case is an open problem.

Moreover, even if the algorithm depends on the arity d of the graph, this
dependency is quite uniform. The depiction of the algorithm does not change.
The key limitation is that the memory needed (size of the set of states) and
the number of colours depends on the arity. Indeed, the automaton uses states
to remember the current half-edge and thus need at least a memory linear in

715

720

725

730

735

740

745

750

the arity. The same is true to encode the tree in the colours. Moreover, for the
latter, it seems difficult to restrict to a finite number of colour. However, one can
note that the memory is linear in the arity and that most encoded data refer to
half-edge. Thus, if we consider a model where colours and automata are put on
half-edges, then we can obtain a universal rule which does not depend on arity.
One can ask if this is also valid in the model where colours and automata are
put on edges. For this more complicated case, the answer is not clear.

One other possible question is to look at possible variations in our graph
structure used. The fact that the graph is undirected is an obvious necessity
for our method to work. A more subtle question is the necessity of encoding
the set of indexes as integers: most of the time, our algorithm only needs to
go to the next index and thus, does only use the cyclic successor. Other than
that, the minimum of the indexes is used only on very specific occasions: for the
initial step (but this initial half-edge could be considered as part of the initial
configuration) and when merges occur during the spanning forest algorithm. For
the latter, one could expect that the method avoiding unexpected merges as
depicted in section 2.3 could help but it also needs the minimum. For now, we
do not know a mean to do without this minimum property.

One other major choice made concerns the initial configuration. We assume
that both the underlying graph is in a clean state and the automata start syn-
chronously. This suggests many possible extensions and questions. Concerning
the synchronous start of automata, this is never used inside the algorithm. Taken
alone, there is no problem in having delayed starts from automata.

Regarding states of the automata, we can remark that many data can be
recovered from the colours. For example, knowing if the automata has finished
Algo. 2 can be detected by knowing whether or not the associated tree has an
unclaimed half-edge. From this point of view, this algorithm seems to be robust
with regards to errors on the state of the automaton.

For colours, we could also take into account some set of initial colours (as
long as it is a strict subset of the working set) by backing the colours as done for
the initial position in a similar way done in [16]. If the set of initial colour can use
any colour, the question becomes more tricky and is open. One possibility could
be to look at similar questions and methods done in [22]. As in the previous
paragraph, the question of robustness may be interesting but in the case of
colours, the answer seems to be that our algorithm is very sensible to any slight
error in the colours.

References

1. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1996)

2. Tel, G.: Introduction to Distributed Algorithms. 2 edn. Cambridge University
Press (2000)

3. Le Lann, G.: Distributed systems - towards a formal approach. In: IFIP Congress.
(1977) 155-160

755

760

765

770

775

780

785

790

795

800

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Korach, E., Kutten, S., Moran, S.: A modular technique for the design of efficient
distributed leader finding algorithms. In: Proceedings of the Fourth Annual ACM
Symposium on Principles of Distributed Computing. PODC ’85, New York, NY,
USA, ACM (1985) 163-174

Chalopin, J., Métivier, Y.: Election and local computations on edges. In
Walukiewicz, 1., ed.: Foundations of Software Science and Computation Structures,
7th International Conference, FOSSACS 2004, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain,
March 29 - April 2, 2004, Proceedings. Volume 2987 of Lecture Notes in Computer
Science., Springer (2004) 90-104

Yamashita, M., Kameda, T.: Electing a leader when processor identity numbers
are not distinct (extended abstract). In: WDAG. Volume 392 of Lecture Notes in
Computer Science., Springer (1989) 303-314

Yamashita, M., Kameda, T.: Computing on anonymous networks: Part i-
characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1) (1996)
69-89

Boldi, P., Shammah, S., Vigna, S., Codenotti, B., Gemmell, P., Simon, J.: Symme-
try breaking in anonymous networks: Characterizations. In: Fourth Israel Sympo-
sium on Theory of Computing and Systems, ISTCS 1996, Jerusalem, Israel, June
10-12, 1996, Proceedings, IEEE Computer Society (1996) 16-26

Dereniowski, D., Pelc, A.: Leader election for anonymous asynchronous agents in
arbitrary networks. Distributed Computing 27(1) (2014) 21-38

Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3) (2006) 166-177

Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46(1) (2006) 69-96

Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1-3) (2007) 34-48
Nichitiu, C., Rémila, E.: Leader election by d dimensional cellular automata. In
Wiedermann, J., van Emde Boas, P., Nielsen, M., eds.: ICALP. Volume 1644 of
Lecture Notes in Computer Science., Springer (1999) 565-574

Nichitiu, C.: Algorithmique sur graphes d’automates: élection d’un chef, simula-
tions. PhD thesis, Ecole Normale Supérieure de Lyon (1999)

Nichitiu, C., Mazoyer, J., Rémila, E.: Algorithms for leader election by cellular
automata. Journal of Algorithms 41(2) (2001) 302 — 329

Bacquey, N.: Leader election on two-dimensional periodic cellular automata. Theor.
Comput. Sci. 659 (2017) 36-52

Angluin, D.: Local and global properties in networks of processors (extended
abstract). In Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J., eds.: Pro-
ceedings of the 12th Annual ACM Symposium on Theory of Computing, April
28-30, 1980, Los Angeles, California, USA, ACM (1980) 82-93

Chalopin, J.: Algorithmique Distribuée, Calculs Locaux et Homomorphismes de
Graphes. PhD thesis, Université Bordeaux I (2006)

Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Mathematics 243(1-3) (2002)
21-66

Bender, M.A., Ferndndez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a
pebble: exploring and mapping directed graphs. Information and Computation
176(1) (2002) 1-21 Extended abstract in Proceedings of 30th Annual ACM
Symposium on Theory of Computing, pp. 269-278, Dallas, TX, May 1998.

805

21.

22.

Bacquey, N.: Complexity classes on spatially periodic cellular automata. In Mayr,
E.W., Portier, N., eds.: STACS. Volume 25 of LIPIcs., Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2014) 112-124

Richard, G.: On the synchronisation problem over cellular automata. In Vollmer,
H., Vallée, B., eds.: 34th Symposium on Theoretical Aspects of Computer Science,
STACS 2017, March 8-11, 2017, Hannover, Germany. Volume 66 of LIPIcs., Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2017) 54:1-54:13

810

815

820

825

830

835

840

845

850

A Algorithm for agents

write init_pos
stay in place

repeat
if MIRROR.vertex is not inside a tree then
write CURRENT.port to children
move to MIRROR.vertex
write foster father to father
move to SUCCESSOR of (CURRENT.vertex, foster father)
else
remove all colors except father,children, and init_pos
move to SUCCESSOR
end if
until CURRENT is intial

write CURRENT wait marker
repeat

write step marker N

repeat

move to SUCCESSOR

until CURRENT has step marker

remove step marker

move to SUCCESSOR
until CURRENT has wait marker
remove wait marker
stay in place

repeat
if —foster fathers— ; 1 then
move to min(foster fathers)
while CURRENT.vertex is not a root do
replace father with foster father
move to old father
end while
end if
write foster fathers to father
move in father
while father exists do
move to father
end while
until CURRENT.vertex is root
stay in place
Goto Span Tree

	Leader election on finite labelled graph with finite memory and anonymous agents

